--- pipeline_tag: tabular-regression --- # TabPFN v2: A Tabular Foundation Model TabPFN is a transformer-based foundation model for tabular data that leverages prior-data based learning to achieve strong performance on small tabular regression tasks without requiring task-specific training. ## Installation ```bash pip install tabpfn ``` ## Model Details - **Developed by:** Prior Labs - **Model type:** Transformer-based foundation model for tabular data - **License:** TBD - **Paper:** Published in Nature (January 2024) - **Repository:** [GitHub - priorlabs/tabpfn](https://github.com/priorlabs/tabpfn) ### Citation TBD ## Quick Start ```python from tabpfn import TabPFNRegressor # Initialize model regressor = TabPFNRegressor() regressor.fit(X_train, y_train) predictions = regressor.predict(X_test) ``` ## Technical Requirements - Python ≥ 3.9 - PyTorch ≥ 2.1 - scikit-learn ≥ 1.0 - Hardware: 16GB+ RAM, CPU (GPU optional) ## Limitations - Not designed for very large datasets - Not suitable for non-tabular data formats ## Resources - **Documentation:** https://priorlabs.ai/docs - **Source:** https://github.com/priorlabs/tabpfn - **Paper:** https://doi.org/10.1038/s41586-024-08328-6 ### Team - Noah Hollmann - Samuel Müller - Lennart Purucker - Arjun Krishnakumar - Max Körfer - Shi Bin Hoo - Robin Tibor Schirrmeister - Frank Hutter - Eddie Bergman