Omidh's picture
update model card README.md
6ddf685
|
raw
history blame
2.91 kB
metadata
license: mit
base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: mDeBERTa-v3-base-xnli-multilingual-nli-2mil7-energy
    results: []

mDeBERTa-v3-base-xnli-multilingual-nli-2mil7-energy

This model is a fine-tuned version of MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2328
  • Accuracy: 0.9637
  • Precision: 0.9637
  • Recall: 0.9636
  • F1: 0.9637
  • Ratio: 0.4847

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • lr_scheduler_warmup_steps: 3
  • num_epochs: 5
  • label_smoothing_factor: 0.01

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Ratio
0.5212 0.43 400 0.3449 0.8948 0.8964 0.8940 0.8945 0.4596
0.4083 0.86 800 0.3203 0.9224 0.9232 0.9218 0.9222 0.4684
0.2384 1.29 1200 0.3149 0.9361 0.9365 0.9358 0.9360 0.4759
0.213 1.72 1600 0.3024 0.9443 0.9442 0.9442 0.9442 0.4865
0.1686 2.15 2000 0.2742 0.9493 0.6332 0.6329 0.6330 0.4934
0.105 2.58 2400 0.2641 0.9518 0.9519 0.9522 0.9518 0.5041
0.116 3.01 2800 0.2515 0.9555 0.6374 0.6372 0.6372 0.4997
0.077 3.44 3200 0.2511 0.9580 0.9580 0.9583 0.9580 0.4966
0.0622 3.86 3600 0.2355 0.9643 0.9644 0.9642 0.9643 0.4828
0.0524 4.29 4000 0.2289 0.9637 0.9636 0.9637 0.9637 0.4884
0.0498 4.72 4400 0.2336 0.9643 0.9644 0.9642 0.9643 0.4840

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3