Omidh commited on
Commit
6ddf685
1 Parent(s): 21279cd

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: mDeBERTa-v3-base-xnli-multilingual-nli-2mil7-energy
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # mDeBERTa-v3-base-xnli-multilingual-nli-2mil7-energy
20
+
21
+ This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.2328
24
+ - Accuracy: 0.9637
25
+ - Precision: 0.9637
26
+ - Recall: 0.9636
27
+ - F1: 0.9637
28
+ - Ratio: 0.4847
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 2
49
+ - eval_batch_size: 2
50
+ - seed: 42
51
+ - gradient_accumulation_steps: 2
52
+ - total_train_batch_size: 4
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - lr_scheduler_warmup_ratio: 0.06
56
+ - lr_scheduler_warmup_steps: 3
57
+ - num_epochs: 5
58
+ - label_smoothing_factor: 0.01
59
+
60
+ ### Training results
61
+
62
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio |
63
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
64
+ | 0.5212 | 0.43 | 400 | 0.3449 | 0.8948 | 0.8964 | 0.8940 | 0.8945 | 0.4596 |
65
+ | 0.4083 | 0.86 | 800 | 0.3203 | 0.9224 | 0.9232 | 0.9218 | 0.9222 | 0.4684 |
66
+ | 0.2384 | 1.29 | 1200 | 0.3149 | 0.9361 | 0.9365 | 0.9358 | 0.9360 | 0.4759 |
67
+ | 0.213 | 1.72 | 1600 | 0.3024 | 0.9443 | 0.9442 | 0.9442 | 0.9442 | 0.4865 |
68
+ | 0.1686 | 2.15 | 2000 | 0.2742 | 0.9493 | 0.6332 | 0.6329 | 0.6330 | 0.4934 |
69
+ | 0.105 | 2.58 | 2400 | 0.2641 | 0.9518 | 0.9519 | 0.9522 | 0.9518 | 0.5041 |
70
+ | 0.116 | 3.01 | 2800 | 0.2515 | 0.9555 | 0.6374 | 0.6372 | 0.6372 | 0.4997 |
71
+ | 0.077 | 3.44 | 3200 | 0.2511 | 0.9580 | 0.9580 | 0.9583 | 0.9580 | 0.4966 |
72
+ | 0.0622 | 3.86 | 3600 | 0.2355 | 0.9643 | 0.9644 | 0.9642 | 0.9643 | 0.4828 |
73
+ | 0.0524 | 4.29 | 4000 | 0.2289 | 0.9637 | 0.9636 | 0.9637 | 0.9637 | 0.4884 |
74
+ | 0.0498 | 4.72 | 4400 | 0.2336 | 0.9643 | 0.9644 | 0.9642 | 0.9643 | 0.4840 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.31.0
80
+ - Pytorch 2.1.0+cu121
81
+ - Datasets 2.14.7
82
+ - Tokenizers 0.13.3