--- license: mit base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: mDeBERTa-v3-base-xnli-multilingual-nli-2mil7-energy results: [] --- # mDeBERTa-v3-base-xnli-multilingual-nli-2mil7-energy This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2328 - Accuracy: 0.9637 - Precision: 0.9637 - Recall: 0.9636 - F1: 0.9637 - Ratio: 0.4847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - lr_scheduler_warmup_steps: 3 - num_epochs: 5 - label_smoothing_factor: 0.01 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | 0.5212 | 0.43 | 400 | 0.3449 | 0.8948 | 0.8964 | 0.8940 | 0.8945 | 0.4596 | | 0.4083 | 0.86 | 800 | 0.3203 | 0.9224 | 0.9232 | 0.9218 | 0.9222 | 0.4684 | | 0.2384 | 1.29 | 1200 | 0.3149 | 0.9361 | 0.9365 | 0.9358 | 0.9360 | 0.4759 | | 0.213 | 1.72 | 1600 | 0.3024 | 0.9443 | 0.9442 | 0.9442 | 0.9442 | 0.4865 | | 0.1686 | 2.15 | 2000 | 0.2742 | 0.9493 | 0.6332 | 0.6329 | 0.6330 | 0.4934 | | 0.105 | 2.58 | 2400 | 0.2641 | 0.9518 | 0.9519 | 0.9522 | 0.9518 | 0.5041 | | 0.116 | 3.01 | 2800 | 0.2515 | 0.9555 | 0.6374 | 0.6372 | 0.6372 | 0.4997 | | 0.077 | 3.44 | 3200 | 0.2511 | 0.9580 | 0.9580 | 0.9583 | 0.9580 | 0.4966 | | 0.0622 | 3.86 | 3600 | 0.2355 | 0.9643 | 0.9644 | 0.9642 | 0.9643 | 0.4828 | | 0.0524 | 4.29 | 4000 | 0.2289 | 0.9637 | 0.9636 | 0.9637 | 0.9637 | 0.4884 | | 0.0498 | 4.72 | 4400 | 0.2336 | 0.9643 | 0.9644 | 0.9642 | 0.9643 | 0.4840 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.7 - Tokenizers 0.13.3