|
--- |
|
language: |
|
- jp |
|
- en |
|
tags: |
|
- pytorch |
|
- causal-lm |
|
license: apache-2.0 |
|
|
|
--- |
|
|
|
# Genji-JP 6B |
|
|
|
Please check our blog post for more details, samples, evaluations and more: |
|
[Blogpost](https://blog.novelai.net/data-efficient-language-transfer-with-gpt-j-45daedaaf35a) |
|
|
|
## Model Description |
|
|
|
Genji-JP 6B is a model finetuned on our Japanese storytelling dataset based on EleutherAI's GPT-J 6B model. This particular model is trained on Japanese web novels. |
|
|
|
| Hyperparameter | Value | |
|
|-------------------|--------| |
|
| n_parameters | 6,053,381,344 | |
|
| n_layers | 28* | |
|
| d_model | 4,096 | |
|
| d_ff | 16,384 | |
|
| n_heads | 16 | |
|
| d_head | 256 | |
|
| n_ctx | 2,048 | |
|
| n_vocab | 50,400 (same tokenizer as GPT-2/3) | |
|
| position encoding | [Rotary position encodings (RoPE)](https://arxiv.org/abs/2104.09864) | |
|
| RoPE dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) | |
|
|
|
`*` each layer consists of one feedforward block and one self attention block |
|
|
|
The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model |
|
dimension is split into 16 heads, each with a dimension of 256. Rotary position encodings (RoPE) was applied to 64 |
|
dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as |
|
GPT-2/GPT-3. |
|
|
|
## Training data |
|
|
|
GPT-J 6B was pretrained on the [Pile](pile.eleuther.ai), a large scale curated dataset created by EleutherAI for the purpose of training this model. After the pre-training, it's finetuned on our Japanese storytelling dataset. Check our blog post for more details. |
|
|
|
### How to use |
|
|
|
``` |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B") |
|
model = AutoModelForCausalLM.from_pretrained("NovelAI/genji-jp", torch_dtype=torch.float16, low_cpu_mem_usage=True).eval().cuda() |
|
text = '''ใใใใ๏ผใใชใใฏ็ฐไธ็ใซ่ปข็ใใฆใใพใใพใใใๅ่
ใจใชใฃใฆใไปฒ้ใไฝใใ็ฐไธ็ใๅ้บใใใ๏ผ |
|
*** |
|
่ปข็ใใใจใใใ่ฝๅใๆใซๅ
ฅใใฆใใใใใใฏใ''' |
|
|
|
tokens = tokenizer(text, return_tensors="pt").input_ids |
|
generated_tokens = model.generate(tokens.long().cuda(), use_cache=True, do_sample=True, temperature=1, top_p=0.9, repetition_penalty=1.125, min_length=1, max_length=len(tokens[0]) + 400, pad_token_id=tokenizer.eos_token_id) |
|
last_tokens = generated_tokens[0] |
|
generated_text = tokenizer.decode(last_tokens).replace("๏ฟฝ", "") |
|
print("Generation:\n" + generated_text) |
|
``` |
|
When run, produces output like this: |
|
``` |
|
Generation: |
|
ใใใใ๏ผใใชใใฏ็ฐไธ็ใซ่ปข็ใใฆใใพใใพใใใๅ่
ใจใชใฃใฆใไปฒ้ใไฝใใ็ฐไธ็ใๅ้บใใใ๏ผ |
|
*** |
|
่ปข็ใใใจใใใ่ฝๅใๆใซๅ
ฅใใฆใใใใใใฏใใไบ็ฅใใ ใ้ๅปใใๆชๆฅใฎใใจใใ่ชฐใ็ฅใใชใๅบๆฅไบใๅซใใฆ่ฆ้ใใใจใๅบๆฅใใ |
|
ๆช้ญใฎๆฌ ็ใจๅผใฐใใๅฐใใช็ตๆถใๅใ่พผใใงใไฝฟๅฝนใใใใจใๅบๆฅใใไบบใๆนใใคใใๅ ่ฝใใใใไฝใใใไฟบใฏ็ทใชใใฆๅฑ
ใชใใฃใใใๅฅณใซ่ๅณใใชใใโฆโฆใใใชใฏใบใฎ็ๆฃใๆ
ใไธใใๅฅดใๅคใใชใใจๆใใจใใกใใฃใจ่ฆใใใ |
|
ใ ใใไธ้จใฎไบบ้ใซใฏๅๅ่
ใๅพใใใจใๅบๆฅใใ็ฎ็ซใใชใ่กใซใใๅฏบใฎไธญใงใๅธธใซๅฎถใซๅผใใใใฃใฆใใ่ไบบใใใใชใคใใฎ้ญใใณใณใใญใผใซใใใใจใๅบๆฅใใฎใ ใไพฟๅฉใช่ฝๅใ ใใใใใ่ฃๅใ่
ใฏๅคงๅขใใใๆฐใๆใใฐใ็ใใใ ใใๆณจๆใๅฟ
่ฆใ ใ |
|
โโใใใฃใฆใใใใ |
|
ใใขใผใญใณใฏไธๆตใซ็ฌใฃใใใใฎ |
|
``` |
|
|
|
## Acknowledgements |
|
|
|
This project was possible because of the compute provided by the |
|
[TPU Research Cloud](https://sites.research.google/trc/) |
|
|
|
Thanks [EleutherAI](https://eleuther.ai/) for pretraining the GPT-J 6B model. |
|
|
|
Thanks to everyone who contributed to this project! |
|
|
|
- [Finetune](https://github.com/finetuneanon) |
|
- [Aero](https://github.com/AeroScripts) |
|
- [Kurumuz](https://github.com/kurumuz) |