File size: 4,260 Bytes
2d9465d e494c22 3a5713e 2d9465d 57d1fd4 2d9465d 3a5713e 2d9465d 74c1cb8 2d9465d 5b4dc79 2d9465d fcbe07a 2d9465d 9ac3417 2d9465d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
language:
- jp
- en
tags:
- pytorch
- causal-lm
license: apache-2.0
---
# Genji-JP 6B
Please check our blog post for more details, samples, evaluations and more:
[Blogpost](https://blog.novelai.net/data-efficient-language-transfer-with-gpt-j-45daedaaf35a)
## Model Description
Genji-JP 6B is a model finetuned on our Japanese storytelling dataset based on EleutherAI's GPT-J 6B model. This particular model is trained on Japanese web novels.
| Hyperparameter | Value |
|-------------------|--------|
| n_parameters | 6,053,381,344 |
| n_layers | 28* |
| d_model | 4,096 |
| d_ff | 16,384 |
| n_heads | 16 |
| d_head | 256 |
| n_ctx | 2,048 |
| n_vocab | 50,400 (same tokenizer as GPT-2/3) |
| position encoding | [Rotary position encodings (RoPE)](https://arxiv.org/abs/2104.09864) |
| RoPE dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) |
`*` each layer consists of one feedforward block and one self attention block
The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model
dimension is split into 16 heads, each with a dimension of 256. Rotary position encodings (RoPE) was applied to 64
dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as
GPT-2/GPT-3.
## Training data
GPT-J 6B was pretrained on the [Pile](pile.eleuther.ai), a large scale curated dataset created by EleutherAI for the purpose of training this model. After the pre-training, it's finetuned on our Japanese storytelling dataset. Check our blog post for more details.
### How to use
```
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
model = AutoModelForCausalLM.from_pretrained("NovelAI/genji-jp", torch_dtype=torch.float16, low_cpu_mem_usage=True).eval().cuda()
text = '''ใใใใ๏ผใใชใใฏ็ฐไธ็ใซ่ปข็ใใฆใใพใใพใใใๅ่
ใจใชใฃใฆใไปฒ้ใไฝใใ็ฐไธ็ใๅ้บใใใ๏ผ
***
่ปข็ใใใจใใใ่ฝๅใๆใซๅ
ฅใใฆใใใใใใฏใ'''
tokens = tokenizer(text, return_tensors="pt").input_ids
generated_tokens = model.generate(tokens.long().cuda(), use_cache=True, do_sample=True, temperature=1, top_p=0.9, repetition_penalty=1.125, min_length=1, max_length=len(tokens[0]) + 400, pad_token_id=tokenizer.eos_token_id)
last_tokens = generated_tokens[0]
generated_text = tokenizer.decode(last_tokens).replace("๏ฟฝ", "")
print("Generation:\n" + generated_text)
```
When run, produces output like this:
```
Generation:
ใใใใ๏ผใใชใใฏ็ฐไธ็ใซ่ปข็ใใฆใใพใใพใใใๅ่
ใจใชใฃใฆใไปฒ้ใไฝใใ็ฐไธ็ใๅ้บใใใ๏ผ
***
่ปข็ใใใจใใใ่ฝๅใๆใซๅ
ฅใใฆใใใใใใฏใใไบ็ฅใใ ใ้ๅปใใๆชๆฅใฎใใจใใ่ชฐใ็ฅใใชใๅบๆฅไบใๅซใใฆ่ฆ้ใใใจใๅบๆฅใใ
ๆช้ญใฎๆฌ ็ใจๅผใฐใใๅฐใใช็ตๆถใๅใ่พผใใงใไฝฟๅฝนใใใใจใๅบๆฅใใไบบใๆนใใคใใๅ ่ฝใใใใไฝใใใไฟบใฏ็ทใชใใฆๅฑ
ใชใใฃใใใๅฅณใซ่ๅณใใชใใโฆโฆใใใชใฏใบใฎ็ๆฃใๆ
ใไธใใๅฅดใๅคใใชใใจๆใใจใใกใใฃใจ่ฆใใใ
ใ ใใไธ้จใฎไบบ้ใซใฏๅๅ่
ใๅพใใใจใๅบๆฅใใ็ฎ็ซใใชใ่กใซใใๅฏบใฎไธญใงใๅธธใซๅฎถใซๅผใใใใฃใฆใใ่ไบบใใใใชใคใใฎ้ญใใณใณใใญใผใซใใใใจใๅบๆฅใใฎใ ใไพฟๅฉใช่ฝๅใ ใใใใใ่ฃๅใ่
ใฏๅคงๅขใใใๆฐใๆใใฐใ็ใใใ ใใๆณจๆใๅฟ
่ฆใ ใ
โโใใใฃใฆใใใใ
ใใขใผใญใณใฏไธๆตใซ็ฌใฃใใใใฎ
```
## Acknowledgements
This project was possible because of the compute provided by the
[TPU Research Cloud](https://sites.research.google/trc/)
Thanks [EleutherAI](https://eleuther.ai/) for pretraining the GPT-J 6B model.
Thanks to everyone who contributed to this project!
- [Finetune](https://github.com/finetuneanon)
- [Aero](https://github.com/AeroScripts)
- [Kurumuz](https://github.com/kurumuz) |