language:
- jp
- en
tags:
- pytorch
- causal-lm
license: apache-2.0
Genji-JP 6B
Please check our blog post for more details, samples, evaluations and more: Blogpost
Model Description
Genji-JP 6B is a model finetuned on our Japanese storytelling dataset based on EleutherAI's GPT-J 6B model. This particular model is trained on Japanese web novels.
Hyperparameter | Value |
---|---|
n_parameters | 6,053,381,344 |
n_layers | 28* |
d_model | 4,096 |
d_ff | 16,384 |
n_heads | 16 |
d_head | 256 |
n_ctx | 2,048 |
n_vocab | 50,400 (same tokenizer as GPT-2/3) |
position encoding | Rotary position encodings (RoPE) |
RoPE dimensions | 64 |
*
each layer consists of one feedforward block and one self attention block
The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model dimension is split into 16 heads, each with a dimension of 256. Rotary position encodings (RoPE) was applied to 64 dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as GPT-2/GPT-3.
Training data
GPT-J 6B was pretrained on the Pile, a large scale curated dataset created by EleutherAI for the purpose of training this model. After the pre-training, it's finetuned on our Japanese storytelling dataset. Check our blog post for more details.
How to use
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
model = AutoModelForCausalLM.from_pretrained("NovelAI/genji-jp", torch_dtype=torch.float16, low_cpu_mem_usage=True).eval().cuda()
text = '''ใใใใ๏ผใใชใใฏ็ฐไธ็ใซ่ปข็ใใฆใใพใใพใใใๅ่
ใจใชใฃใฆใไปฒ้ใไฝใใ็ฐไธ็ใๅ้บใใใ๏ผ
***
่ปข็ใใใจใใใ่ฝๅใๆใซๅ
ฅใใฆใใใใใใฏใ'''
tokens = tokenizer(text, return_tensors="pt").input_ids
generated_tokens = model.generate(tokens.long().cuda(), use_cache=True, do_sample=True, temperature=1, top_p=0.9, repetition_penalty=1.125, min_length=1, max_length=len(tokens[0]) + 400, pad_token_id=tokenizer.eos_token_id)
last_tokens = generated_tokens[0]
generated_text = tokenizer.decode(last_tokens).replace("๏ฟฝ", "")
print("Generation:\n" + generated_text)
When run, produces output like this:
Generation:
ใใใใ๏ผใใชใใฏ็ฐไธ็ใซ่ปข็ใใฆใใพใใพใใใๅ่
ใจใชใฃใฆใไปฒ้ใไฝใใ็ฐไธ็ใๅ้บใใใ๏ผ
***
่ปข็ใใใจใใใ่ฝๅใๆใซๅ
ฅใใฆใใใใใใฏใใไบ็ฅใใ ใ้ๅปใใๆชๆฅใฎใใจใใ่ชฐใ็ฅใใชใๅบๆฅไบใๅซใใฆ่ฆ้ใใใจใๅบๆฅใใ
ๆช้ญใฎๆฌ ็ใจๅผใฐใใๅฐใใช็ตๆถใๅใ่พผใใงใไฝฟๅฝนใใใใจใๅบๆฅใใไบบใๆนใใคใใๅ ่ฝใใใใไฝใใใไฟบใฏ็ทใชใใฆๅฑ
ใชใใฃใใใๅฅณใซ่ๅณใใชใใโฆโฆใใใชใฏใบใฎ็ๆฃใๆ
ใไธใใๅฅดใๅคใใชใใจๆใใจใใกใใฃใจ่ฆใใใ
ใ ใใไธ้จใฎไบบ้ใซใฏๅๅ่
ใๅพใใใจใๅบๆฅใใ็ฎ็ซใใชใ่กใซใใๅฏบใฎไธญใงใๅธธใซๅฎถใซๅผใใใใฃใฆใใ่ไบบใใใใชใคใใฎ้ญใใณใณใใญใผใซใใใใจใๅบๆฅใใฎใ ใไพฟๅฉใช่ฝๅใ ใใใใใ่ฃๅใ่
ใฏๅคงๅขใใใๆฐใๆใใฐใ็ใใใ ใใๆณจๆใๅฟ
่ฆใ ใ
โโใใใฃใฆใใใใ
ใใขใผใญใณใฏไธๆตใซ็ฌใฃใใใใฎ
Acknowledgements
This project was possible because of the compute provided by the TPU Research Cloud
Thanks EleutherAI for pretraining the GPT-J 6B model.
Thanks to everyone who contributed to this project!