|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- jsonl_dataset_sum.py |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: summarization_all |
|
results: |
|
- task: |
|
name: Summarization |
|
type: summarization |
|
dataset: |
|
name: jsonl_dataset_sum.py |
|
type: jsonl_dataset_sum.py |
|
config: 'null' |
|
split: None |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 21.7197 |
|
license: artistic-2.0 |
|
language: |
|
- ko |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# summarization_all |
|
|
|
This model is a fine-tuned version of [KETI-AIR/long-ke-t5-base](https://huggingface.co/KETI-AIR/long-ke-t5-base) on the jsonl_dataset_sum.py dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0758 |
|
- Rouge1: 21.7197 |
|
- Rouge2: 10.1392 |
|
- Rougel: 21.1499 |
|
- Rougelsum: 21.173 |
|
- Gen Len: 87.4589 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- total_train_batch_size: 8 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 1.2171 | 1.0 | 184670 | 1.2070 | 20.611 | 9.2868 | 20.0833 | 20.1095 | 87.4065 | |
|
| 1.0916 | 2.0 | 369340 | 1.1190 | 21.3264 | 9.8656 | 20.7683 | 20.8005 | 88.0284 | |
|
| 0.9823 | 3.0 | 554010 | 1.0758 | 21.7197 | 10.1392 | 21.1499 | 21.173 | 87.4589 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.12.0 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.13.2 |