--- tags: - generated_from_trainer datasets: - jsonl_dataset_sum.py metrics: - rouge model-index: - name: summarization_all results: - task: name: Summarization type: summarization dataset: name: jsonl_dataset_sum.py type: jsonl_dataset_sum.py config: 'null' split: None metrics: - name: Rouge1 type: rouge value: 21.7197 license: artistic-2.0 language: - ko --- # summarization_all This model is a fine-tuned version of [KETI-AIR/long-ke-t5-base](https://huggingface.co/KETI-AIR/long-ke-t5-base) on the jsonl_dataset_sum.py dataset. It achieves the following results on the evaluation set: - Loss: 1.0758 - Rouge1: 21.7197 - Rouge2: 10.1392 - Rougel: 21.1499 - Rougelsum: 21.173 - Gen Len: 87.4589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.2171 | 1.0 | 184670 | 1.2070 | 20.611 | 9.2868 | 20.0833 | 20.1095 | 87.4065 | | 1.0916 | 2.0 | 369340 | 1.1190 | 21.3264 | 9.8656 | 20.7683 | 20.8005 | 88.0284 | | 0.9823 | 3.0 | 554010 | 1.0758 | 21.7197 | 10.1392 | 21.1499 | 21.173 | 87.4589 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.0 - Datasets 2.8.0 - Tokenizers 0.13.2