kimsan0622's picture
Create README.md
50fbb4e
|
raw
history blame
2.16 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - jsonl_dataset_sum.py
metrics:
  - rouge
model-index:
  - name: summarization_all
    results:
      - task:
          name: Summarization
          type: summarization
        dataset:
          name: jsonl_dataset_sum.py
          type: jsonl_dataset_sum.py
          config: 'null'
          split: None
        metrics:
          - name: Rouge1
            type: rouge
            value: 21.7197
license: artistic-2.0
language:
  - ko

summarization_all

This model is a fine-tuned version of KETI-AIR/long-ke-t5-base on the jsonl_dataset_sum.py dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0758
  • Rouge1: 21.7197
  • Rouge2: 10.1392
  • Rougel: 21.1499
  • Rougelsum: 21.173
  • Gen Len: 87.4589

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 8
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.2171 1.0 184670 1.2070 20.611 9.2868 20.0833 20.1095 87.4065
1.0916 2.0 369340 1.1190 21.3264 9.8656 20.7683 20.8005 88.0284
0.9823 3.0 554010 1.0758 21.7197 10.1392 21.1499 21.173 87.4589

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.12.0
  • Datasets 2.8.0
  • Tokenizers 0.13.2