|
--- |
|
language: en |
|
license: apache-2.0 |
|
--- |
|
|
|
# LoNAS Adapter Card: lonas-llama-7b-commonsense-adapter |
|
|
|
The super-adapter-network fine-tuned on LLaMA-7B with some commonsense reasoning datasets using LoNAS. |
|
|
|
## Model Details |
|
|
|
### Information |
|
|
|
- **Adapter name:** lonas-llama-7b-commonsense-adapter |
|
- **Base model:** [LLaMA-7b](https://huggingface.co/yahma/llama-7b-hf) |
|
- **Domain:** Commonsense |
|
- **Subnetwork version:** Super-network |
|
- **NNCF Configuration:** [nncf_lonas_llama_7b.json](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/nncf_config/unified_commonsense/nncf_lonas_llama_7b.json) |
|
|
|
### Adapter Configuration |
|
|
|
- **LoRA rank:** 32 |
|
- **LoRA alpha:** 64 |
|
- **LoRA target modules:** q_proj, k_proj, v_proj, up_proj, gate_proj, down_proj |
|
|
|
### Training Hyperparameters |
|
|
|
- **Batch size:** 16 |
|
- **Learning rate:** 3e-4 |
|
- **Epoch:** 6 |
|
|
|
### Training Data |
|
|
|
Unified commonsense reasoning dataset: [commonsense_15k.json](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/ft-training_set/commonsense_15k.json). |
|
|
|
### Evaluation Data |
|
[BoolQ](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/boolq/test.json), [PIQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/piqa/test.json), [SIQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/social_i_qa/test.json), [HellaSwag](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/hellaswag/test.json), [WinoGrande](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/winogrande/test.json), [ARC-e](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/ARC-Easy/test.json), [ARC-c](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/ARC-Challenge/test.json), [OBQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/openbookqa/test.json). |
|
|
|
|
|
## How to use |
|
|
|
Refer to [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS#evaluation](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS#evaluation): |
|
```bash |
|
CUDA_VISIBLE_DEVICES=${DEVICES} python run_commonsense.py \ |
|
--dataset_path None \ |
|
--model_name_or_path yahma/llama-7b-hf \ |
|
--lora \ |
|
--lora_weights lonas-llama-7b-commonsense \ |
|
--nncf_config nncf_config/unified_commonsense/nncf_lonas_llama_7b.json \ |
|
--do_test \ |
|
--output_dir lonas-llama-7b-commonsense/results |
|
``` |
|
|
|
## Evaluation Results |
|
|
|
Results of the heuristic sub-network discoverd from the super-network: |
|
|
|
| Method | Total Params. | TFLOPs | BoolQ | PIQA | SIQA | HellaSwag | WinoG | Arc-e | Arc-c | OBQA | Average | |
|
|-------------|----------------|-----------|-------|------|------|-----------|-------|-------|-------|------|----------------| |
|
| LoRA | 6.7B | 1.7 | 62.6 | 75.3 | 67.9 | 52.9 | 58.6 | 79.2 | 58.3 | 71.2 | **65.8** | |
|
| **LoNAS** | **5.6B** | **1.4** | 62.9 | 73.0 | 68.7 | 51.4 | 63.9 | 72.3 | 58.5 | 71.0 | 65.2 | |
|
|
|
|
|
## Model Sources |
|
|
|
- **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS) |
|
- **Paper:** [LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models]() |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@inproceedings{ |
|
munoz2024lonas, |
|
title={LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models}, |
|
author={J. Pablo Muñoz and Jinjie Yuan and Yi Zheng and Nilesh Jain}, |
|
booktitle={The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation}, |
|
year={2024}, |
|
url={} |
|
} |
|
``` |
|
|
|
## License |
|
|
|
Apache-2.0 |
|
|