Update README
Browse files
README.md
CHANGED
@@ -1,82 +1,84 @@
|
|
1 |
-
---
|
2 |
-
language: en
|
3 |
-
license: apache-2.0
|
4 |
-
---
|
5 |
-
|
6 |
-
# LoNAS
|
7 |
-
|
8 |
-
The super-network fine-tuned on LLaMA-7B with some commonsense reasoning datasets using LoNAS.
|
9 |
-
|
10 |
-
## Model Details
|
11 |
-
|
12 |
-
### Information
|
13 |
-
|
14 |
-
- **
|
15 |
-
- **Base model:** [LLaMA-7b](https://huggingface.co/yahma/llama-7b-hf)
|
16 |
-
- **Domain:** Commonsense
|
17 |
-
- **Subnetwork version:** Super-network
|
18 |
-
- **NNCF Configuration:** [nncf_lonas_llama_7b.json](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/nncf_config/unified_commonsense/nncf_lonas_llama_7b.json)
|
19 |
-
|
20 |
-
### Adapter Configuration
|
21 |
-
|
22 |
-
- **LoRA rank:** 32
|
23 |
-
- **LoRA alpha:** 64
|
24 |
-
- **LoRA target modules:** q_proj, k_proj, v_proj, up_proj, gate_proj, down_proj
|
25 |
-
|
26 |
-
### Training Hyperparameters
|
27 |
-
|
28 |
-
- **Batch size:** 16
|
29 |
-
- **Learning rate:** 3e-4
|
30 |
-
- **Epoch:** 6
|
31 |
-
|
32 |
-
### Training Data
|
33 |
-
|
34 |
-
Unified commonsense reasoning dataset: [commonsense_15k.json](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/ft-training_set/commonsense_15k.json).
|
35 |
-
|
36 |
-
### Evaluation Data
|
37 |
-
[BoolQ](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/boolq/test.json), [PIQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/piqa/test.json), [SIQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/social_i_qa/test.json), [HellaSwag](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/hellaswag/test.json), [WinoGrande](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/winogrande/test.json), [ARC-e](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/ARC-Easy/test.json), [ARC-c](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/ARC-Challenge/test.json), [OBQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/openbookqa/test.json).
|
38 |
-
|
39 |
-
|
40 |
-
## How to use
|
41 |
-
|
42 |
-
Refer to [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS#evaluation](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS#evaluation):
|
43 |
-
```bash
|
44 |
-
CUDA_VISIBLE_DEVICES=${DEVICES} python run_commonsense.py \
|
45 |
-
--dataset_path None \
|
46 |
-
--model_name_or_path yahma/llama-7b-hf \
|
47 |
-
--lora \
|
48 |
-
--lora_weights lonas-llama-7b-commonsense \
|
49 |
-
--nncf_config nncf_config/unified_commonsense/nncf_lonas_llama_7b.json \
|
50 |
-
--do_test \
|
51 |
-
--output_dir lonas-llama-7b-commonsense/results
|
52 |
-
```
|
53 |
-
|
54 |
-
## Evaluation Results
|
55 |
-
|
56 |
-
Results of the heuristic sub-network discoverd from the super-network:
|
57 |
-
|
58 |
-
| Method | Total Params. | TFLOPs | BoolQ | PIQA | SIQA | HellaSwag | WinoG | Arc-e | Arc-c | OBQA | Average |
|
59 |
-
|-------------|----------------|-----------|-------|------|------|-----------|-------|-------|-------|------|----------------|
|
60 |
-
| LoRA | 6.7B | 1.7 | 62.6 | 75.3 | 67.9 | 52.9 | 58.6 | 79.2 | 58.3 | 71.2 | **65.8** |
|
61 |
-
| **LoNAS** | **5.6B** | **1.4** | 62.9 | 73.0 | 68.7 | 51.4 | 63.9 | 72.3 | 58.5 | 71.0 | 65.2 |
|
62 |
-
|
63 |
-
|
64 |
-
## Model Sources
|
65 |
-
|
66 |
-
- **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS)
|
67 |
-
- **Paper:** [LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models]()
|
68 |
-
|
69 |
-
## Citation
|
70 |
-
|
71 |
-
```bibtex
|
72 |
-
@
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
}
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: apache-2.0
|
4 |
+
---
|
5 |
+
|
6 |
+
# LoNAS Adapter Card: lonas-llama-7b-commonsense-adapter
|
7 |
+
|
8 |
+
The super-adapter-network fine-tuned on LLaMA-7B with some commonsense reasoning datasets using LoNAS.
|
9 |
+
|
10 |
+
## Model Details
|
11 |
+
|
12 |
+
### Information
|
13 |
+
|
14 |
+
- **Adapter name:** lonas-llama-7b-commonsense-adapter
|
15 |
+
- **Base model:** [LLaMA-7b](https://huggingface.co/yahma/llama-7b-hf)
|
16 |
+
- **Domain:** Commonsense
|
17 |
+
- **Subnetwork version:** Super-network
|
18 |
+
- **NNCF Configuration:** [nncf_lonas_llama_7b.json](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/nncf_config/unified_commonsense/nncf_lonas_llama_7b.json)
|
19 |
+
|
20 |
+
### Adapter Configuration
|
21 |
+
|
22 |
+
- **LoRA rank:** 32
|
23 |
+
- **LoRA alpha:** 64
|
24 |
+
- **LoRA target modules:** q_proj, k_proj, v_proj, up_proj, gate_proj, down_proj
|
25 |
+
|
26 |
+
### Training Hyperparameters
|
27 |
+
|
28 |
+
- **Batch size:** 16
|
29 |
+
- **Learning rate:** 3e-4
|
30 |
+
- **Epoch:** 6
|
31 |
+
|
32 |
+
### Training Data
|
33 |
+
|
34 |
+
Unified commonsense reasoning dataset: [commonsense_15k.json](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/ft-training_set/commonsense_15k.json).
|
35 |
+
|
36 |
+
### Evaluation Data
|
37 |
+
[BoolQ](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/boolq/test.json), [PIQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/piqa/test.json), [SIQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/social_i_qa/test.json), [HellaSwag](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/hellaswag/test.json), [WinoGrande](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/winogrande/test.json), [ARC-e](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/ARC-Easy/test.json), [ARC-c](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/ARC-Challenge/test.json), [OBQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/openbookqa/test.json).
|
38 |
+
|
39 |
+
|
40 |
+
## How to use
|
41 |
+
|
42 |
+
Refer to [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS#evaluation](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS#evaluation):
|
43 |
+
```bash
|
44 |
+
CUDA_VISIBLE_DEVICES=${DEVICES} python run_commonsense.py \
|
45 |
+
--dataset_path None \
|
46 |
+
--model_name_or_path yahma/llama-7b-hf \
|
47 |
+
--lora \
|
48 |
+
--lora_weights lonas-llama-7b-commonsense \
|
49 |
+
--nncf_config nncf_config/unified_commonsense/nncf_lonas_llama_7b.json \
|
50 |
+
--do_test \
|
51 |
+
--output_dir lonas-llama-7b-commonsense/results
|
52 |
+
```
|
53 |
+
|
54 |
+
## Evaluation Results
|
55 |
+
|
56 |
+
Results of the heuristic sub-network discoverd from the super-network:
|
57 |
+
|
58 |
+
| Method | Total Params. | TFLOPs | BoolQ | PIQA | SIQA | HellaSwag | WinoG | Arc-e | Arc-c | OBQA | Average |
|
59 |
+
|-------------|----------------|-----------|-------|------|------|-----------|-------|-------|-------|------|----------------|
|
60 |
+
| LoRA | 6.7B | 1.7 | 62.6 | 75.3 | 67.9 | 52.9 | 58.6 | 79.2 | 58.3 | 71.2 | **65.8** |
|
61 |
+
| **LoNAS** | **5.6B** | **1.4** | 62.9 | 73.0 | 68.7 | 51.4 | 63.9 | 72.3 | 58.5 | 71.0 | 65.2 |
|
62 |
+
|
63 |
+
|
64 |
+
## Model Sources
|
65 |
+
|
66 |
+
- **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS)
|
67 |
+
- **Paper:** [LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models]()
|
68 |
+
|
69 |
+
## Citation
|
70 |
+
|
71 |
+
```bibtex
|
72 |
+
@inproceedings{
|
73 |
+
munoz2024lonas,
|
74 |
+
title={LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models},
|
75 |
+
author={J. Pablo Muñoz and Jinjie Yuan and Yi Zheng and Nilesh Jain},
|
76 |
+
booktitle={The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation},
|
77 |
+
year={2024},
|
78 |
+
url={}
|
79 |
+
}
|
80 |
+
```
|
81 |
+
|
82 |
+
## License
|
83 |
+
|
84 |
+
Apache-2.0
|