jpablomch commited on
Commit
9c85878
1 Parent(s): 27e479a

Update README

Browse files
Files changed (1) hide show
  1. README.md +84 -82
README.md CHANGED
@@ -1,82 +1,84 @@
1
- ---
2
- language: en
3
- license: apache-2.0
4
- ---
5
-
6
- # LoNAS Model Card: lonas-llama-7b-commonsense
7
-
8
- The super-network fine-tuned on LLaMA-7B with some commonsense reasoning datasets using LoNAS.
9
-
10
- ## Model Details
11
-
12
- ### Information
13
-
14
- - **Model name:** lonas-llama-7b-commonsense
15
- - **Base model:** [LLaMA-7b](https://huggingface.co/yahma/llama-7b-hf)
16
- - **Domain:** Commonsense
17
- - **Subnetwork version:** Super-network
18
- - **NNCF Configuration:** [nncf_lonas_llama_7b.json](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/nncf_config/unified_commonsense/nncf_lonas_llama_7b.json)
19
-
20
- ### Adapter Configuration
21
-
22
- - **LoRA rank:** 32
23
- - **LoRA alpha:** 64
24
- - **LoRA target modules:** q_proj, k_proj, v_proj, up_proj, gate_proj, down_proj
25
-
26
- ### Training Hyperparameters
27
-
28
- - **Batch size:** 16
29
- - **Learning rate:** 3e-4
30
- - **Epoch:** 6
31
-
32
- ### Training Data
33
-
34
- Unified commonsense reasoning dataset: [commonsense_15k.json](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/ft-training_set/commonsense_15k.json).
35
-
36
- ### Evaluation Data
37
- [BoolQ](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/boolq/test.json), [PIQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/piqa/test.json), [SIQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/social_i_qa/test.json), [HellaSwag](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/hellaswag/test.json), [WinoGrande](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/winogrande/test.json), [ARC-e](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/ARC-Easy/test.json), [ARC-c](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/ARC-Challenge/test.json), [OBQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/openbookqa/test.json).
38
-
39
-
40
- ## How to use
41
-
42
- Refer to [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS#evaluation](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS#evaluation):
43
- ```bash
44
- CUDA_VISIBLE_DEVICES=${DEVICES} python run_commonsense.py \
45
- --dataset_path None \
46
- --model_name_or_path yahma/llama-7b-hf \
47
- --lora \
48
- --lora_weights lonas-llama-7b-commonsense \
49
- --nncf_config nncf_config/unified_commonsense/nncf_lonas_llama_7b.json \
50
- --do_test \
51
- --output_dir lonas-llama-7b-commonsense/results
52
- ```
53
-
54
- ## Evaluation Results
55
-
56
- Results of the heuristic sub-network discoverd from the super-network:
57
-
58
- | Method | Total Params. | TFLOPs | BoolQ | PIQA | SIQA | HellaSwag | WinoG | Arc-e | Arc-c | OBQA | Average |
59
- |-------------|----------------|-----------|-------|------|------|-----------|-------|-------|-------|------|----------------|
60
- | LoRA | 6.7B | 1.7 | 62.6 | 75.3 | 67.9 | 52.9 | 58.6 | 79.2 | 58.3 | 71.2 | **65.8** |
61
- | **LoNAS** | **5.6B** | **1.4** | 62.9 | 73.0 | 68.7 | 51.4 | 63.9 | 72.3 | 58.5 | 71.0 | 65.2 |
62
-
63
-
64
- ## Model Sources
65
-
66
- - **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS)
67
- - **Paper:** [LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models]()
68
-
69
- ## Citation
70
-
71
- ```bibtex
72
- @article{munoz2024lonas,
73
- title = {LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models},
74
- author={J. Pablo Munoz and Jinjie Yuan and Yi Zheng and Nilesh Jain},
75
- journal={},
76
- year={2024}
77
- }
78
- ```
79
-
80
- ## License
81
-
82
- Apache-2.0
 
 
 
1
+ ---
2
+ language: en
3
+ license: apache-2.0
4
+ ---
5
+
6
+ # LoNAS Adapter Card: lonas-llama-7b-commonsense-adapter
7
+
8
+ The super-adapter-network fine-tuned on LLaMA-7B with some commonsense reasoning datasets using LoNAS.
9
+
10
+ ## Model Details
11
+
12
+ ### Information
13
+
14
+ - **Adapter name:** lonas-llama-7b-commonsense-adapter
15
+ - **Base model:** [LLaMA-7b](https://huggingface.co/yahma/llama-7b-hf)
16
+ - **Domain:** Commonsense
17
+ - **Subnetwork version:** Super-network
18
+ - **NNCF Configuration:** [nncf_lonas_llama_7b.json](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/nncf_config/unified_commonsense/nncf_lonas_llama_7b.json)
19
+
20
+ ### Adapter Configuration
21
+
22
+ - **LoRA rank:** 32
23
+ - **LoRA alpha:** 64
24
+ - **LoRA target modules:** q_proj, k_proj, v_proj, up_proj, gate_proj, down_proj
25
+
26
+ ### Training Hyperparameters
27
+
28
+ - **Batch size:** 16
29
+ - **Learning rate:** 3e-4
30
+ - **Epoch:** 6
31
+
32
+ ### Training Data
33
+
34
+ Unified commonsense reasoning dataset: [commonsense_15k.json](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/ft-training_set/commonsense_15k.json).
35
+
36
+ ### Evaluation Data
37
+ [BoolQ](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/boolq/test.json), [PIQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/piqa/test.json), [SIQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/social_i_qa/test.json), [HellaSwag](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/hellaswag/test.json), [WinoGrande](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/winogrande/test.json), [ARC-e](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/ARC-Easy/test.json), [ARC-c](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/ARC-Challenge/test.json), [OBQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/openbookqa/test.json).
38
+
39
+
40
+ ## How to use
41
+
42
+ Refer to [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS#evaluation](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS#evaluation):
43
+ ```bash
44
+ CUDA_VISIBLE_DEVICES=${DEVICES} python run_commonsense.py \
45
+ --dataset_path None \
46
+ --model_name_or_path yahma/llama-7b-hf \
47
+ --lora \
48
+ --lora_weights lonas-llama-7b-commonsense \
49
+ --nncf_config nncf_config/unified_commonsense/nncf_lonas_llama_7b.json \
50
+ --do_test \
51
+ --output_dir lonas-llama-7b-commonsense/results
52
+ ```
53
+
54
+ ## Evaluation Results
55
+
56
+ Results of the heuristic sub-network discoverd from the super-network:
57
+
58
+ | Method | Total Params. | TFLOPs | BoolQ | PIQA | SIQA | HellaSwag | WinoG | Arc-e | Arc-c | OBQA | Average |
59
+ |-------------|----------------|-----------|-------|------|------|-----------|-------|-------|-------|------|----------------|
60
+ | LoRA | 6.7B | 1.7 | 62.6 | 75.3 | 67.9 | 52.9 | 58.6 | 79.2 | 58.3 | 71.2 | **65.8** |
61
+ | **LoNAS** | **5.6B** | **1.4** | 62.9 | 73.0 | 68.7 | 51.4 | 63.9 | 72.3 | 58.5 | 71.0 | 65.2 |
62
+
63
+
64
+ ## Model Sources
65
+
66
+ - **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS)
67
+ - **Paper:** [LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models]()
68
+
69
+ ## Citation
70
+
71
+ ```bibtex
72
+ @inproceedings{
73
+ munoz2024lonas,
74
+ title={LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models},
75
+ author={J. Pablo Muñoz and Jinjie Yuan and Yi Zheng and Nilesh Jain},
76
+ booktitle={The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation},
77
+ year={2024},
78
+ url={}
79
+ }
80
+ ```
81
+
82
+ ## License
83
+
84
+ Apache-2.0