--- language: en license: apache-2.0 --- # LoNAS Adapter Card: lonas-llama-7b-commonsense-adapter The super-adapter-network fine-tuned on LLaMA-7B with some commonsense reasoning datasets using LoNAS. ## Model Details ### Information - **Adapter name:** lonas-llama-7b-commonsense-adapter - **Base model:** [LLaMA-7b](https://huggingface.co/yahma/llama-7b-hf) - **Domain:** Commonsense - **Subnetwork version:** Super-network - **NNCF Configuration:** [nncf_lonas_llama_7b.json](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS/nncf_config/unified_commonsense/nncf_lonas_llama_7b.json) ### Adapter Configuration - **LoRA rank:** 32 - **LoRA alpha:** 64 - **LoRA target modules:** q_proj, k_proj, v_proj, up_proj, gate_proj, down_proj ### Training Hyperparameters - **Batch size:** 16 - **Learning rate:** 3e-4 - **Epoch:** 6 ### Training Data Unified commonsense reasoning dataset: [commonsense_15k.json](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/ft-training_set/commonsense_15k.json). ### Evaluation Data [BoolQ](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/boolq/test.json), [PIQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/piqa/test.json), [SIQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/social_i_qa/test.json), [HellaSwag](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/hellaswag/test.json), [WinoGrande](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/winogrande/test.json), [ARC-e](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/ARC-Easy/test.json), [ARC-c](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/ARC-Challenge/test.json), [OBQA](https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/dataset/openbookqa/test.json). ## How to use Refer to [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS#evaluation](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS#evaluation): ```bash CUDA_VISIBLE_DEVICES=${DEVICES} python run_commonsense.py \ --dataset_path None \ --model_name_or_path yahma/llama-7b-hf \ --lora \ --lora_weights lonas-llama-7b-commonsense \ --nncf_config nncf_config/unified_commonsense/nncf_lonas_llama_7b.json \ --do_test \ --output_dir lonas-llama-7b-commonsense/results ``` ## Evaluation Results Results of the heuristic sub-network discoverd from the super-network: | Method | Total Params. | TFLOPs | BoolQ | PIQA | SIQA | HellaSwag | WinoG | Arc-e | Arc-c | OBQA | Average | |-------------|----------------|-----------|-------|------|------|-----------|-------|-------|-------|------|----------------| | LoRA | 6.7B | 1.7 | 62.6 | 75.3 | 67.9 | 52.9 | 58.6 | 79.2 | 58.3 | 71.2 | **65.8** | | **LoNAS** | **5.6B** | **1.4** | 62.9 | 73.0 | 68.7 | 51.4 | 63.9 | 72.3 | 58.5 | 71.0 | 65.2 | ## Model Sources - **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/LoNAS) - **Paper:** [LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models]() ## Citation ```bibtex @inproceedings{ munoz2024lonas, title={LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models}, author={J. Pablo Muñoz and Jinjie Yuan and Yi Zheng and Nilesh Jain}, booktitle={The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation}, year={2024}, url={} } ``` ## License Apache-2.0