Ben10x's picture
End of training
b5efbb6 verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - Ben10x/MedMentions-NER
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-base-medmentions
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: Ben10x/MedMentions-NER
          type: Ben10x/MedMentions-NER
        metrics:
          - name: Precision
            type: precision
            value: 0.5820728291316527
          - name: Recall
            type: recall
            value: 0.6344207955338451
          - name: F1
            type: f1
            value: 0.6071204975165909
          - name: Accuracy
            type: accuracy
            value: 0.8688595400463357

bert-base-medmentions

This model is a fine-tuned version of bert-base-uncased on the Ben10x/MedMentions-NER dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5156
  • Precision: 0.5821
  • Recall: 0.6344
  • F1: 0.6071
  • Accuracy: 0.8689

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAFACTOR and the args are: No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15.0
  • label_smoothing_factor: 0.2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.5686 1.0 2911 1.5440 0.5246 0.6123 0.5650 0.8550
1.4792 2.0 5822 1.5156 0.5821 0.6344 0.6071 0.8689
1.4111 3.0 8733 1.5191 0.5865 0.6494 0.6163 0.8714
1.356 4.0 11644 1.5293 0.6236 0.6403 0.6318 0.8777
1.3182 5.0 14555 1.5433 0.6283 0.6426 0.6354 0.8789
1.2919 6.0 17466 1.5671 0.6242 0.6628 0.6429 0.8794
1.2743 7.0 20377 1.5697 0.6356 0.6574 0.6463 0.8809
1.2633 8.0 23288 1.5806 0.6364 0.6699 0.6528 0.8813
1.2542 9.0 26199 1.5942 0.6278 0.6734 0.6498 0.8808
1.2457 10.0 29110 1.6076 0.6372 0.6634 0.6500 0.8814
1.2398 11.0 32021 1.6077 0.6414 0.6696 0.6552 0.8835
1.2377 12.0 34932 1.6135 0.6478 0.6759 0.6615 0.8847
1.2349 13.0 37843 1.6195 0.6433 0.6756 0.6590 0.8839
1.2328 14.0 40754 1.6228 0.6462 0.6726 0.6592 0.8845
1.231 15.0 43665 1.6247 0.6473 0.6735 0.6601 0.8847

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1