--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - Ben10x/MedMentions-NER metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-medmentions results: - task: name: Token Classification type: token-classification dataset: name: Ben10x/MedMentions-NER type: Ben10x/MedMentions-NER metrics: - name: Precision type: precision value: 0.5820728291316527 - name: Recall type: recall value: 0.6344207955338451 - name: F1 type: f1 value: 0.6071204975165909 - name: Accuracy type: accuracy value: 0.8688595400463357 --- # bert-base-medmentions This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the Ben10x/MedMentions-NER dataset. It achieves the following results on the evaluation set: - Loss: 1.5156 - Precision: 0.5821 - Recall: 0.6344 - F1: 0.6071 - Accuracy: 0.8689 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAFACTOR and the args are: No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15.0 - label_smoothing_factor: 0.2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.5686 | 1.0 | 2911 | 1.5440 | 0.5246 | 0.6123 | 0.5650 | 0.8550 | | 1.4792 | 2.0 | 5822 | 1.5156 | 0.5821 | 0.6344 | 0.6071 | 0.8689 | | 1.4111 | 3.0 | 8733 | 1.5191 | 0.5865 | 0.6494 | 0.6163 | 0.8714 | | 1.356 | 4.0 | 11644 | 1.5293 | 0.6236 | 0.6403 | 0.6318 | 0.8777 | | 1.3182 | 5.0 | 14555 | 1.5433 | 0.6283 | 0.6426 | 0.6354 | 0.8789 | | 1.2919 | 6.0 | 17466 | 1.5671 | 0.6242 | 0.6628 | 0.6429 | 0.8794 | | 1.2743 | 7.0 | 20377 | 1.5697 | 0.6356 | 0.6574 | 0.6463 | 0.8809 | | 1.2633 | 8.0 | 23288 | 1.5806 | 0.6364 | 0.6699 | 0.6528 | 0.8813 | | 1.2542 | 9.0 | 26199 | 1.5942 | 0.6278 | 0.6734 | 0.6498 | 0.8808 | | 1.2457 | 10.0 | 29110 | 1.6076 | 0.6372 | 0.6634 | 0.6500 | 0.8814 | | 1.2398 | 11.0 | 32021 | 1.6077 | 0.6414 | 0.6696 | 0.6552 | 0.8835 | | 1.2377 | 12.0 | 34932 | 1.6135 | 0.6478 | 0.6759 | 0.6615 | 0.8847 | | 1.2349 | 13.0 | 37843 | 1.6195 | 0.6433 | 0.6756 | 0.6590 | 0.8839 | | 1.2328 | 14.0 | 40754 | 1.6228 | 0.6462 | 0.6726 | 0.6592 | 0.8845 | | 1.231 | 15.0 | 43665 | 1.6247 | 0.6473 | 0.6735 | 0.6601 | 0.8847 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1