bert-base-medmentions

This model is a fine-tuned version of bert-base-uncased on the Ben10x/MedMentions-NER dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5156
  • Precision: 0.5821
  • Recall: 0.6344
  • F1: 0.6071
  • Accuracy: 0.8689

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAFACTOR and the args are: No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15.0
  • label_smoothing_factor: 0.2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.5686 1.0 2911 1.5440 0.5246 0.6123 0.5650 0.8550
1.4792 2.0 5822 1.5156 0.5821 0.6344 0.6071 0.8689
1.4111 3.0 8733 1.5191 0.5865 0.6494 0.6163 0.8714
1.356 4.0 11644 1.5293 0.6236 0.6403 0.6318 0.8777
1.3182 5.0 14555 1.5433 0.6283 0.6426 0.6354 0.8789
1.2919 6.0 17466 1.5671 0.6242 0.6628 0.6429 0.8794
1.2743 7.0 20377 1.5697 0.6356 0.6574 0.6463 0.8809
1.2633 8.0 23288 1.5806 0.6364 0.6699 0.6528 0.8813
1.2542 9.0 26199 1.5942 0.6278 0.6734 0.6498 0.8808
1.2457 10.0 29110 1.6076 0.6372 0.6634 0.6500 0.8814
1.2398 11.0 32021 1.6077 0.6414 0.6696 0.6552 0.8835
1.2377 12.0 34932 1.6135 0.6478 0.6759 0.6615 0.8847
1.2349 13.0 37843 1.6195 0.6433 0.6756 0.6590 0.8839
1.2328 14.0 40754 1.6228 0.6462 0.6726 0.6592 0.8845
1.231 15.0 43665 1.6247 0.6473 0.6735 0.6601 0.8847

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
38
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Ben10x/bert-base-medmentions

Finetuned
(4827)
this model

Dataset used to train Ben10x/bert-base-medmentions

Evaluation results