bert-base-medmentions
This model is a fine-tuned version of bert-base-uncased on the Ben10x/MedMentions-NER dataset. It achieves the following results on the evaluation set:
- Loss: 1.5156
- Precision: 0.5821
- Recall: 0.6344
- F1: 0.6071
- Accuracy: 0.8689
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAFACTOR and the args are: No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15.0
- label_smoothing_factor: 0.2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.5686 | 1.0 | 2911 | 1.5440 | 0.5246 | 0.6123 | 0.5650 | 0.8550 |
1.4792 | 2.0 | 5822 | 1.5156 | 0.5821 | 0.6344 | 0.6071 | 0.8689 |
1.4111 | 3.0 | 8733 | 1.5191 | 0.5865 | 0.6494 | 0.6163 | 0.8714 |
1.356 | 4.0 | 11644 | 1.5293 | 0.6236 | 0.6403 | 0.6318 | 0.8777 |
1.3182 | 5.0 | 14555 | 1.5433 | 0.6283 | 0.6426 | 0.6354 | 0.8789 |
1.2919 | 6.0 | 17466 | 1.5671 | 0.6242 | 0.6628 | 0.6429 | 0.8794 |
1.2743 | 7.0 | 20377 | 1.5697 | 0.6356 | 0.6574 | 0.6463 | 0.8809 |
1.2633 | 8.0 | 23288 | 1.5806 | 0.6364 | 0.6699 | 0.6528 | 0.8813 |
1.2542 | 9.0 | 26199 | 1.5942 | 0.6278 | 0.6734 | 0.6498 | 0.8808 |
1.2457 | 10.0 | 29110 | 1.6076 | 0.6372 | 0.6634 | 0.6500 | 0.8814 |
1.2398 | 11.0 | 32021 | 1.6077 | 0.6414 | 0.6696 | 0.6552 | 0.8835 |
1.2377 | 12.0 | 34932 | 1.6135 | 0.6478 | 0.6759 | 0.6615 | 0.8847 |
1.2349 | 13.0 | 37843 | 1.6195 | 0.6433 | 0.6756 | 0.6590 | 0.8839 |
1.2328 | 14.0 | 40754 | 1.6228 | 0.6462 | 0.6726 | 0.6592 | 0.8845 |
1.231 | 15.0 | 43665 | 1.6247 | 0.6473 | 0.6735 | 0.6601 | 0.8847 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 38
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Ben10x/bert-base-medmentions
Base model
google-bert/bert-base-uncasedDataset used to train Ben10x/bert-base-medmentions
Evaluation results
- Precision on Ben10x/MedMentions-NERself-reported0.582
- Recall on Ben10x/MedMentions-NERself-reported0.634
- F1 on Ben10x/MedMentions-NERself-reported0.607
- Accuracy on Ben10x/MedMentions-NERself-reported0.869