|
--- |
|
license: mit |
|
datasets: |
|
- dair-ai/emotion |
|
language: |
|
- en |
|
library_name: transformers |
|
widget: |
|
- text: I am so happy with the results! |
|
- text: I am so pissed with the results! |
|
tags: |
|
- debarta |
|
- debarta-xlarge |
|
- emotions-classifier |
|
--- |
|
|
|
# π Emotion-X: Fine-tuned DeBERTa-Xlarge Based Emotion Detection π |
|
|
|
This is a fine-tuned version of [microsoft/deberta-xlarge-mnli](https://huggingface.co/microsoft/deberta-xlarge-mnli) for emotion detection on the [dair-ai/emotion](https://huggingface.co/dair-ai/emotion) dataset. |
|
|
|
## π Overview |
|
|
|
Emotion-X is a state-of-the-art emotion detection model fine-tuned from Microsoft's DeBERTa-Xlarge model. Designed to accurately classify text into one of six emotional categories, Emotion-X leverages the robust capabilities of DeBERTa and fine-tunes it on a comprehensive emotion dataset, ensuring high accuracy and reliability. |
|
|
|
|
|
## π Model Details |
|
|
|
- **π Model Name:** `AnkitAI/deberta-xlarge-base-emotions-classifier` |
|
- **π Base Model:** `microsoft/deberta-xlarge-mnli` |
|
- **π Dataset:** [dair-ai/emotion](https://huggingface.co/dair-ai/emotion) |
|
- **βοΈ Fine-tuning:** This model was fine-tuned for emotion detection with a classification head for six emotional categories (anger, disgust, fear, joy, sadness, surprise). |
|
|
|
## ποΈ Training |
|
|
|
The model was trained using the following parameters: |
|
|
|
- **π§ Learning Rate:** 2e-5 |
|
- **π¦ Batch Size:** 4 |
|
- **β³ Epochs:** 3 |
|
- **βοΈ Weight Decay:** 0.01 |
|
- **π
Evaluation Strategy:** Epoch |
|
|
|
### ποΈ Training Details |
|
|
|
- **π Eval Loss:** 0.0858 |
|
- **β±οΈ Eval Runtime:** 110070.6349 seconds |
|
- **π Eval Samples/Second:** 78.495 |
|
- **π Eval Steps/Second:** 2.453 |
|
- **π Epoch:** 3.0 |
|
- **π Train Loss:** 0.1049 |
|
- **β³ Eval Accuracy:** 94.6% |
|
- **π Eval Precision:** 94.8% |
|
- **β±οΈ Eval Recall:** 94.5% |
|
- **π Eval F1 Score:** 94.7% |
|
|
|
## π Usage |
|
|
|
You can use this model directly with the Hugging Face `transformers` library: |
|
|
|
```python |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model_name = "AnkitAI/deberta-xlarge-base-emotions-classifier" |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
# Example usage |
|
def predict_emotion(text): |
|
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128) |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
predictions = logits.argmax(dim=1) |
|
return predictions |
|
|
|
text = "I'm so happy with the results!" |
|
emotion = predict_emotion(text) |
|
print("Detected Emotion:", emotion) |
|
``` |
|
|
|
## π Emotion Labels |
|
- π Anger |
|
- π€’ Disgust |
|
- π¨ Fear |
|
- π Joy |
|
- π’ Sadness |
|
- π² Surprise |
|
|
|
|
|
## π Model Card Data |
|
|
|
| Parameter | Value | |
|
|-------------------------------|---------------------------| |
|
| Model Name | microsoft/deberta-xlarge-mnli | |
|
| Training Dataset | dair-ai/emotion | |
|
| Number of Training Epochs | 3 | |
|
| Learning Rate | 2e-5 | |
|
| Per Device Train Batch Size | 4 | |
|
| Evaluation Strategy | Epoch | |
|
| Best Model Accuracy | 94.6% | |
|
|
|
|
|
## π License |
|
|
|
This model is licensed under the [MIT License](LICENSE). |