AnkitAI's picture
Update README.md
cddca4f verified
|
raw
history blame
3.38 kB
metadata
license: mit
datasets:
  - dair-ai/emotion
language:
  - en
library_name: transformers
widget:
  - text: I am so happy with the results!
  - text: I am so pissed with the results!
tags:
  - debarta
  - debarta-xlarge
  - emotions-classifier

🌟 Emotion-X: Fine-tuned DeBERTa-Xlarge Based Emotion Detection 🌟

This is a fine-tuned version of microsoft/deberta-xlarge-mnli for emotion detection on the dair-ai/emotion dataset.

πŸš€ Overview

Emotion-X is a state-of-the-art emotion detection model fine-tuned from Microsoft's DeBERTa-Xlarge model. Designed to accurately classify text into one of six emotional categories, Emotion-X leverages the robust capabilities of DeBERTa and fine-tunes it on a comprehensive emotion dataset, ensuring high accuracy and reliability.

πŸ“œ Model Details

  • πŸ†• Model Name: AnkitAI/deberta-xlarge-base-emotions-classifier
  • πŸ”— Base Model: microsoft/deberta-xlarge-mnli
  • πŸ“Š Dataset: dair-ai/emotion
  • βš™οΈ Fine-tuning: This model was fine-tuned for emotion detection with a classification head for six emotional categories (anger, disgust, fear, joy, sadness, surprise).

πŸ‹οΈ Training

The model was trained using the following parameters:

  • πŸ”§ Learning Rate: 2e-5
  • πŸ“¦ Batch Size: 4
  • ⏳ Epochs: 3
  • βš–οΈ Weight Decay: 0.01
  • πŸ“… Evaluation Strategy: Epoch

πŸ‹οΈ Training Details

  • πŸ“‰ Eval Loss: 0.0858
  • ⏱️ Eval Runtime: 110070.6349 seconds
  • πŸ“ˆ Eval Samples/Second: 78.495
  • πŸŒ€ Eval Steps/Second: 2.453
  • πŸ”„ Epoch: 3.0
  • πŸ“‰ Train Loss: 0.1049
  • ⏳ Eval Accuracy: 94.6%
  • πŸŒ€ Eval Precision: 94.8%
  • ⏱️ Eval Recall: 94.5%
  • πŸ“ˆ Eval F1 Score: 94.7%

πŸš€ Usage

You can use this model directly with the Hugging Face transformers library:

from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "AnkitAI/deberta-xlarge-base-emotions-classifier"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Example usage
def predict_emotion(text):
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
    outputs = model(**inputs)
    logits = outputs.logits
    predictions = logits.argmax(dim=1)
    return predictions

text = "I'm so happy with the results!"
emotion = predict_emotion(text)
print("Detected Emotion:", emotion)

πŸ“ Emotion Labels

  • 😠 Anger
  • 🀒 Disgust
  • 😨 Fear
  • 😊 Joy
  • 😒 Sadness
  • 😲 Surprise

πŸ“œ Model Card Data

Parameter Value
Model Name microsoft/deberta-xlarge-mnli
Training Dataset dair-ai/emotion
Number of Training Epochs 3
Learning Rate 2e-5
Per Device Train Batch Size 4
Evaluation Strategy Epoch
Best Model Accuracy 94.6%

πŸ“œ License

This model is licensed under the MIT License.