File size: 3,380 Bytes
98abb99
 
 
 
 
 
 
d5f4df0
 
 
 
 
 
 
98abb99
 
 
 
 
 
2400fe9
 
 
 
 
98abb99
 
cddca4f
98abb99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ce07fb
98abb99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f4df0
98abb99
d5f4df0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
license: mit
datasets:
- dair-ai/emotion
language:
- en
library_name: transformers
widget:
- text: I am so happy with the results!
- text: I am so pissed with the results!
tags:
- debarta
- debarta-xlarge
- emotions-classifier
---

# 🌟 Emotion-X: Fine-tuned DeBERTa-Xlarge Based Emotion Detection 🌟

This is a fine-tuned version of [microsoft/deberta-xlarge-mnli](https://huggingface.co/microsoft/deberta-xlarge-mnli) for emotion detection on the [dair-ai/emotion](https://huggingface.co/dair-ai/emotion) dataset.

## πŸš€ Overview

Emotion-X is a state-of-the-art emotion detection model fine-tuned from Microsoft's DeBERTa-Xlarge model. Designed to accurately classify text into one of six emotional categories, Emotion-X leverages the robust capabilities of DeBERTa and fine-tunes it on a comprehensive emotion dataset, ensuring high accuracy and reliability.


## πŸ“œ Model Details

- **πŸ†• Model Name:** `AnkitAI/deberta-xlarge-base-emotions-classifier`
- **πŸ”— Base Model:** `microsoft/deberta-xlarge-mnli`
- **πŸ“Š Dataset:** [dair-ai/emotion](https://huggingface.co/dair-ai/emotion)
- **βš™οΈ Fine-tuning:** This model was fine-tuned for emotion detection with a classification head for six emotional categories (anger, disgust, fear, joy, sadness, surprise).

## πŸ‹οΈ Training

The model was trained using the following parameters:

- **πŸ”§ Learning Rate:** 2e-5
- **πŸ“¦ Batch Size:** 4
- **⏳ Epochs:** 3
- **βš–οΈ Weight Decay:** 0.01
- **πŸ“… Evaluation Strategy:** Epoch

### πŸ‹οΈ Training Details

- **πŸ“‰ Eval Loss:** 0.0858
- **⏱️ Eval Runtime:** 110070.6349 seconds
- **πŸ“ˆ Eval Samples/Second:** 78.495
- **πŸŒ€ Eval Steps/Second:** 2.453
- **πŸ”„ Epoch:** 3.0
- **πŸ“‰ Train Loss:** 0.1049
- **⏳ Eval Accuracy:** 94.6%
- **πŸŒ€ Eval Precision:** 94.8%
- **⏱️ Eval Recall:** 94.5%
- **πŸ“ˆ Eval F1 Score:** 94.7%

## πŸš€ Usage

You can use this model directly with the Hugging Face `transformers` library:

```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "AnkitAI/deberta-xlarge-base-emotions-classifier"
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Example usage
def predict_emotion(text):
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
    outputs = model(**inputs)
    logits = outputs.logits
    predictions = logits.argmax(dim=1)
    return predictions

text = "I'm so happy with the results!"
emotion = predict_emotion(text)
print("Detected Emotion:", emotion)
```

## πŸ“ Emotion Labels
- 😠 Anger
- 🀒 Disgust
- 😨 Fear
- 😊 Joy
- 😒 Sadness
- 😲 Surprise


## πŸ“œ Model Card Data

| Parameter                     | Value                     |
|-------------------------------|---------------------------|
| Model Name                    | microsoft/deberta-xlarge-mnli |
| Training Dataset              | dair-ai/emotion           |
| Number of Training Epochs     | 3                         |
| Learning Rate                 | 2e-5                      |
| Per Device Train Batch Size   | 4                         |
| Evaluation Strategy           | Epoch                     |
| Best Model Accuracy           | 94.6%                     |


## πŸ“œ License

This model is licensed under the [MIT License](LICENSE).