|
--- |
|
license: apache-2.0 |
|
base_model: distilbert-base-cased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: bert_clf_results |
|
results: [] |
|
datasets: |
|
- app_reviews |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert_clf_results |
|
|
|
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9611 |
|
- Accuracy: 0.7011 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 1.0767 | 1.0 | 5401 | 0.8447 | 0.7087 | |
|
| 0.6523 | 2.0 | 10803 | 0.8287 | 0.7156 | |
|
| 0.7209 | 3.0 | 16204 | 0.8852 | 0.7121 | |
|
| 0.4274 | 4.0 | 21604 | 0.9611 | 0.7011 | |
|
|
|
### Code Implementation |
|
``` |
|
from transformers import AutoTokenizer |
|
from transformers import AutoModelForSequenceClassification |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Andyrasika/bert_clf_results") |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("Andyrasika/bert_clf_results") |
|
with torch.no_grad(): |
|
logits = model(**inputs).logits |
|
|
|
predicted_class_id = logits.argmax().item() |
|
model.config.id2label[predicted_class_id] |
|
``` |
|
Output |
|
``` |
|
'LABEL_4' |
|
``` |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.16.0 |
|
- Tokenizers 0.15.0 |