bert_clf_results / README.md
Andyrasika's picture
Update README.md
b12ea37
metadata
license: apache-2.0
base_model: distilbert-base-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: bert_clf_results
    results: []
datasets:
  - app_reviews
language:
  - en
library_name: transformers
pipeline_tag: text-classification

bert_clf_results

This model is a fine-tuned version of distilbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9611
  • Accuracy: 0.7011

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0767 1.0 5401 0.8447 0.7087
0.6523 2.0 10803 0.8287 0.7156
0.7209 3.0 16204 0.8852 0.7121
0.4274 4.0 21604 0.9611 0.7011

Code Implementation

from transformers import AutoTokenizer
from transformers import AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("Andyrasika/bert_clf_results")
inputs = tokenizer(prompt, return_tensors="pt")


model = AutoModelForSequenceClassification.from_pretrained("Andyrasika/bert_clf_results")
with torch.no_grad():
    logits = model(**inputs).logits

predicted_class_id = logits.argmax().item()
model.config.id2label[predicted_class_id]

Output

'LABEL_4'

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.16.0
  • Tokenizers 0.15.0