bert_clf_results

This model is a fine-tuned version of distilbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9611
  • Accuracy: 0.7011

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0767 1.0 5401 0.8447 0.7087
0.6523 2.0 10803 0.8287 0.7156
0.7209 3.0 16204 0.8852 0.7121
0.4274 4.0 21604 0.9611 0.7011

Code Implementation

from transformers import AutoTokenizer
from transformers import AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("Andyrasika/bert_clf_results")
inputs = tokenizer(prompt, return_tensors="pt")


model = AutoModelForSequenceClassification.from_pretrained("Andyrasika/bert_clf_results")
with torch.no_grad():
    logits = model(**inputs).logits

predicted_class_id = logits.argmax().item()
model.config.id2label[predicted_class_id]

Output

'LABEL_4'

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.16.0
  • Tokenizers 0.15.0
Downloads last month
16
Safetensors
Model size
65.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Andyrasika/bert_clf_results

Finetuned
(224)
this model

Dataset used to train Andyrasika/bert_clf_results