metadata
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: sentence-compression-roberta
results: []
sentence-compression-roberta
This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3812
- Accuracy: 0.8294
- F1: 0.6764
- Precision: 0.6233
- Recall: 0.7394
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.5358 | 1.0 | 50 | 0.5310 | 0.7666 | 0.1251 | 0.6541 | 0.0691 |
0.4129 | 2.0 | 100 | 0.3988 | 0.8103 | 0.5023 | 0.6838 | 0.3969 |
0.3295 | 3.0 | 150 | 0.3812 | 0.8294 | 0.6764 | 0.6233 | 0.7394 |
Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3