Alex MacLean commited on
Commit
5169596
1 Parent(s): 93a8fe3

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: sentence-compression-roberta
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # sentence-compression-roberta
19
+
20
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.3812
23
+ - Accuracy: 0.8294
24
+ - F1: 0.6764
25
+ - Precision: 0.6233
26
+ - Recall: 0.7394
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 64
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_steps: 500
52
+ - num_epochs: 3
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
+ | 0.5358 | 1.0 | 50 | 0.5310 | 0.7666 | 0.1251 | 0.6541 | 0.0691 |
59
+ | 0.4129 | 2.0 | 100 | 0.3988 | 0.8103 | 0.5023 | 0.6838 | 0.3969 |
60
+ | 0.3295 | 3.0 | 150 | 0.3812 | 0.8294 | 0.6764 | 0.6233 | 0.7394 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.12.5
66
+ - Pytorch 1.10.0+cu113
67
+ - Datasets 1.16.1
68
+ - Tokenizers 0.10.3