--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: sentence-compression-roberta results: [] --- # sentence-compression-roberta This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3812 - Accuracy: 0.8294 - F1: 0.6764 - Precision: 0.6233 - Recall: 0.7394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5358 | 1.0 | 50 | 0.5310 | 0.7666 | 0.1251 | 0.6541 | 0.0691 | | 0.4129 | 2.0 | 100 | 0.3988 | 0.8103 | 0.5023 | 0.6838 | 0.3969 | | 0.3295 | 3.0 | 150 | 0.3812 | 0.8294 | 0.6764 | 0.6233 | 0.7394 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3