strickvl's picture
Add new SentenceTransformer model.
cb42ac1 verified
|
raw
history blame
72.5 kB
---
base_model: Snowflake/snowflake-arctic-embed-m
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1490
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: How does ZenML facilitate connecting your deployment to various
cloud providers and infrastructure services?
sentences:
- '🔌Connect services (AWS, GCP, Azure, K8s etc)
Connect your ZenML deployment to a cloud provider and other infrastructure services
and resources.
A production-grade MLOps platform involves interactions between a diverse combination
of third-party libraries and external services sourced from various different
vendors. One of the most daunting hurdles in building and operating an MLOps platform
composed of multiple components is configuring and maintaining uninterrupted and
secured access to the infrastructure resources and services that it consumes.
In layman''s terms, your pipeline code needs to "connect" to a handful of different
services to run successfully and do what it''s designed to do. For example, it
might need to connect to a private AWS S3 bucket to read and store artifacts,
a Kubernetes cluster to execute steps with Kubeflow or Tekton, and a private GCR
container registry to build and store container images. ZenML makes this possible
by allowing you to configure authentication information and credentials embedded
directly into your Stack Components, but this doesn''t scale well when you have
more than a few Stack Components and has many other disadvantages related to usability
and security.
Gaining access to infrastructure resources and services requires knowledge about
the different authentication and authorization mechanisms and involves configuring
and maintaining valid credentials. It gets even more complicated when these different
services need to access each other. For instance, the Kubernetes container running
your pipeline step needs access to the S3 bucket to store artifacts or needs to
access a cloud service like AWS SageMaker, VertexAI, or AzureML to run a CPU/GPU
intensive task like training a model.'
- ' ┃┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ ID │ e316bcb3-6659-467b-81e5-5ec25bfd36b0 ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ NAME │ aws-sts-token ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ TYPE │ 🔶 aws ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ AUTH METHOD │ sts-token ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ RESOURCE TYPES │ 🔶 aws-generic, 📦 s3-bucket, 🌀 kubernetes-cluster, 🐳 docker-registry
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ RESOURCE NAME │ <multiple> ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ SECRET ID │ 971318c9-8db9-4297-967d-80cda070a121 ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ SESSION DURATION │ N/A ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ EXPIRES IN │ 11h58m17s ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ OWNER │ default ┃'
- 'io ┃
┗━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛If you already have one or more Docker
Service Connectors configured in your ZenML deployment, you can check which of
them can be used to access the container registry you want to use for your Default
Container Registry by running e.g.:
zenml service-connector list-resources --connector-type docker --resource-id <REGISTRY_URI>
Example Command Output
$ zenml service-connector list-resources --connector-type docker --resource-id
docker.io
The resource with name ''docker.io'' can be accessed by ''docker'' service connectors
configured in your workspace:
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┓
┃ CONNECTOR ID │ CONNECTOR NAME │ CONNECTOR TYPE │ RESOURCE
TYPE │ RESOURCE NAMES ┃
┠──────────────────────────────────────┼────────────────┼────────────────┼────────────────────┼────────────────┨
┃ cf55339f-dbc8-4ee6-862e-c25aff411292 │ dockerhub │ 🐳 docker │ 🐳 docker-registry
│ docker.io ┃
┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛
After having set up or decided on a Docker Service Connector to use to connect
to the target container registry, you can register the Docker Container Registry
as follows:
# Register the container registry and reference the target registry URI
zenml container-registry register <CONTAINER_REGISTRY_NAME> -f default \
--uri=<REGISTRY_URL>
# Connect the container registry to the target registry via a Docker Service Connector
zenml container-registry connect <CONTAINER_REGISTRY_NAME> -i
A non-interactive version that connects the Default Container Registry to a target
registry through a Docker Service Connector:
zenml container-registry connect <CONTAINER_REGISTRY_NAME> --connector <CONNECTOR_ID>
Example Command Output
$ zenml container-registry connect dockerhub --connector dockerhub'
- source_sentence: How can I configure the orchestrator settings for each cloud provider
in ZenML?
sentences:
- 'kip scoping its Resource Type during registration.a multi-instance Service Connector
instance can be configured once and used to gain access to multiple resources
of the same type, each identifiable by a Resource Name. Not all types of connectors
and not all types of resources support multiple instances. Some Service Connectors
Types like the generic Kubernetes and Docker connector types only allow single-instance
configurations: a Service Connector instance can only be used to access a single
Kubernetes cluster and a single Docker registry. To configure a multi-instance
Service Connector, you can simply skip scoping its Resource Name during registration.
The following is an example of configuring a multi-type AWS Service Connector
instance capable of accessing multiple AWS resources of different types:
zenml service-connector register aws-multi-type --type aws --auto-configure
Example Command Output
⠋ Registering service connector ''aws-multi-type''...
Successfully registered service connector `aws-multi-type` with access to the
following resources:
┏━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ RESOURCE TYPE │ RESOURCE NAMES ┃
┠───────────────────────┼──────────────────────────────────────────────┨
┃ 🔶 aws-generic │ us-east-1 ┃
┠───────────────────────┼──────────────────────────────────────────────┨
┃ 📦 s3-bucket │ s3://aws-ia-mwaa-715803424590 ┃
┃ │ s3://zenfiles ┃
┃ │ s3://zenml-demos ┃
┃ │ s3://zenml-generative-chat ┃
┃ │ s3://zenml-public-datasets ┃
┃ │ s3://zenml-public-swagger-spec ┃
┠───────────────────────┼──────────────────────────────────────────────┨
┃ 🌀 kubernetes-cluster │ zenhacks-cluster ┃'
- 'ister <STACK_NAME> -a <AZURE_STORE_NAME> ... --setWhen you register the Azure
Artifact Store, you can create a ZenML Secret to store a variety of Azure credentials
and then reference it in the Artifact Store configuration:
to use an Azure storage account key , set account_name to your account name and
one of account_key or sas_token to the Azure key or SAS token value as attributes
in the ZenML secret
to use an Azure storage account key connection string , configure the connection_string
attribute in the ZenML secret to your Azure Storage Key connection string
to use Azure Service Principal credentials , create an Azure Service Principal
and then set account_name to your account name and client_id, client_secret and
tenant_id to the client ID, secret and tenant ID of your service principal in
the ZenML secret
This method has some advantages over the implicit authentication method:
you don''t need to install and configure the Azure CLI on your host
you don''t need to care about enabling your other stack components (orchestrators,
step operators and model deployers) to have access to the artifact store through
Azure Managed Identities
you can combine the Azure artifact store with other stack components that are
not running in Azure
Configuring Azure credentials in a ZenML secret and then referencing them in the
Artifact Store configuration could look like this:
# Store the Azure storage account key in a ZenML secret
zenml secret create az_secret \
--account_name=''<YOUR_AZURE_ACCOUNT_NAME>'' \
--account_key=''<YOUR_AZURE_ACCOUNT_KEY>''
# or if you want to use a connection string
zenml secret create az_secret \
--connection_string=''<YOUR_AZURE_CONNECTION_STRING>''
# or if you want to use Azure ServicePrincipal credentials
zenml secret create az_secret \
--account_name=''<YOUR_AZURE_ACCOUNT_NAME>'' \
--tenant_id=''<YOUR_AZURE_TENANT_ID>'' \
--client_id=''<YOUR_AZURE_CLIENT_ID>'' \
--client_secret=''<YOUR_AZURE_CLIENT_SECRET>'''
- '. If not set, the cluster will not be autostopped.down: Tear down the cluster
after all jobs finish (successfully or abnormally). If idle_minutes_to_autostop
is also set, the cluster will be torn down after the specified idle time. Note
that if errors occur during provisioning/data syncing/setting up, the cluster
will not be torn down for debugging purposes.
stream_logs: If True, show the logs in the terminal as they are generated while
the cluster is running.
docker_run_args: Additional arguments to pass to the docker run command. For example,
[''--gpus=all''] to use all GPUs available on the VM.
The following code snippets show how to configure the orchestrator settings for
each cloud provider:
Code Example:
from zenml.integrations.skypilot_aws.flavors.skypilot_orchestrator_aws_vm_flavor
import SkypilotAWSOrchestratorSettings
skypilot_settings = SkypilotAWSOrchestratorSettings(
cpus="2",
memory="16",
accelerators="V100:2",
accelerator_args={"tpu_vm": True, "runtime_version": "tpu-vm-base"},
use_spot=True,
spot_recovery="recovery_strategy",
region="us-west-1",
zone="us-west1-a",
image_id="ami-1234567890abcdef0",
disk_size=100,
disk_tier="high",
cluster_name="my_cluster",
retry_until_up=True,
idle_minutes_to_autostop=60,
down=True,
stream_logs=True
docker_run_args=["--gpus=all"]
@pipeline(
settings={
"orchestrator.vm_aws": skypilot_settings
Code Example:
from zenml.integrations.skypilot_gcp.flavors.skypilot_orchestrator_gcp_vm_flavor
import SkypilotGCPOrchestratorSettings
skypilot_settings = SkypilotGCPOrchestratorSettings(
cpus="2",
memory="16",
accelerators="V100:2",
accelerator_args={"tpu_vm": True, "runtime_version": "tpu-vm-base"},
use_spot=True,
spot_recovery="recovery_strategy",
region="us-west1",
zone="us-west1-a",
image_id="ubuntu-pro-2004-focal-v20231101",
disk_size=100,
disk_tier="high",
cluster_name="my_cluster",
retry_until_up=True,
idle_minutes_to_autostop=60,
down=True,
stream_logs=True
@pipeline(
settings={
"orchestrator.vm_gcp": skypilot_settings'
- source_sentence: What command do you use to create the resources after setting up
the roleRef for a Kubernetes cluster?
sentences:
- 'pace: spark-namespace
roleRef:
kind: ClusterRolename: edit
apiGroup: rbac.authorization.k8s.io
---
And then execute the following command to create the resources:
aws eks --region=$REGION update-kubeconfig --name=$EKS_CLUSTER_NAME
kubectl create -f rbac.yaml
Lastly, note down the namespace and the name of the service account since you
will need them when registering the stack component in the next step.
How to use it
To use the KubernetesSparkStepOperator, you need:
the ZenML spark integration. If you haven''t installed it already, runCopyzenml
integration install spark
Docker installed and running.
A remote artifact store as part of your stack.
A remote container registry as part of your stack.
A Kubernetes cluster deployed.
We can then register the step operator and use it in our active stack:
zenml step-operator register spark_step_operator \
--flavor=spark-kubernetes \
--master=k8s://$EKS_API_SERVER_ENDPOINT \
--namespace=<SPARK_KUBERNETES_NAMESPACE> \
--service_account=<SPARK_KUBERNETES_SERVICE_ACCOUNT>
# Register the stack
zenml stack register spark_stack \
o default \
s spark_step_operator \
a spark_artifact_store \
c spark_container_registry \
i local_builder \
--set
Once you added the step operator to your active stack, you can use it to execute
individual steps of your pipeline by specifying it in the @step decorator as follows:
from zenml import step
@step(step_operator=<STEP_OPERATOR_NAME>)
def step_on_spark(...) -> ...:
"""Some step that should run with Spark on Kubernetes."""
...
After successfully running any step with a KubernetesSparkStepOperator, you should
be able to see that a Spark driver pod was created in your cluster for each pipeline
step when running kubectl get pods -n $KUBERNETES_NAMESPACE.
Instead of hardcoding a step operator name, you can also use the Client to dynamically
use the step operator of your active stack:
from zenml.client import Client
step_operator = Client().active_stack.step_operator
@step(step_operator=step_operator.name)'
- 'et_historical_features(entity_dict, features)
...Note that ZenML''s use of Pydantic to serialize and deserialize inputs stored
in the ZenML metadata means that we are limited to basic data types. Pydantic
cannot handle Pandas DataFrames, for example, or datetime values, so in the above
code you can see that we have to convert them at various points.
For more information and a full list of configurable attributes of the Feast feature
store, check out the SDK Docs .
PreviousFeature Stores
NextDevelop a Custom Feature Store
Last updated 8 days ago'
- 'to get a quick global overview of our performance.# passing the results from
all our previous evaluation steps
@step(enable_cache=False)
def visualize_evaluation_results(
small_retrieval_eval_failure_rate: float,
small_retrieval_eval_failure_rate_reranking: float,
full_retrieval_eval_failure_rate: float,
full_retrieval_eval_failure_rate_reranking: float,
failure_rate_bad_answers: float,
failure_rate_bad_immediate_responses: float,
failure_rate_good_responses: float,
average_toxicity_score: float,
average_faithfulness_score: float,
average_helpfulness_score: float,
average_relevance_score: float,
) -> Optional[Image.Image]:
"""Visualizes the evaluation results."""
step_context = get_step_context()
pipeline_run_name = step_context.pipeline_run.name
normalized_scores = [
score / 20
for score in [
small_retrieval_eval_failure_rate,
small_retrieval_eval_failure_rate_reranking,
full_retrieval_eval_failure_rate,
full_retrieval_eval_failure_rate_reranking,
failure_rate_bad_answers,
scores = normalized_scores + [
failure_rate_bad_immediate_responses,
failure_rate_good_responses,
average_toxicity_score,
average_faithfulness_score,
average_helpfulness_score,
average_relevance_score,
labels = [
"Small Retrieval Eval Failure Rate",
"Small Retrieval Eval Failure Rate Reranking",
"Full Retrieval Eval Failure Rate",
"Full Retrieval Eval Failure Rate Reranking",
"Failure Rate Bad Answers",
"Failure Rate Bad Immediate Responses",
"Failure Rate Good Responses",
"Average Toxicity Score",
"Average Faithfulness Score",
"Average Helpfulness Score",
"Average Relevance Score",
# Create a new figure and axis
fig, ax = plt.subplots(figsize=(10, 6))
# Plot the horizontal bar chart
y_pos = np.arange(len(labels))
ax.barh(y_pos, scores, align="center")
ax.set_yticks(y_pos)
ax.set_yticklabels(labels)
ax.invert_yaxis() # Labels read top-to-bottom
ax.set_xlabel("Score")
ax.set_xlim(0, 5)
ax.set_title(f"Evaluation Metrics for {pipeline_run_name}")
# Adjust the layout
plt.tight_layout()'
- source_sentence: What is the command to register and connect a Vertex AI Orchestrator
Stack Component to the target GCP project using ZenML?
sentences:
- 'ggingFaceModelDeployer.get_active_model_deployer()# fetch existing services with
same pipeline name, step name and model name
existing_services = model_deployer.find_model_server(
pipeline_name=pipeline_name,
pipeline_step_name=pipeline_step_name,
model_name=model_name,
running=running,
if not existing_services:
raise RuntimeError(
f"No Hugging Face inference endpoint deployed by step "
f"''{pipeline_step_name}'' in pipeline ''{pipeline_name}'' with name "
f"''{model_name}'' is currently running."
return existing_services[0]
# Use the service for inference
@step
def predictor(
service: HuggingFaceDeploymentService,
data: str
) -> Annotated[str, "predictions"]:
"""Run a inference request against a prediction service"""
prediction = service.predict(data)
return prediction
@pipeline
def huggingface_deployment_inference_pipeline(
pipeline_name: str, pipeline_step_name: str = "huggingface_model_deployer_step",
):
inference_data = ...
model_deployment_service = prediction_service_loader(
pipeline_name=pipeline_name,
pipeline_step_name=pipeline_step_name,
predictions = predictor(model_deployment_service, inference_data)
For more information and a full list of configurable attributes of the Hugging
Face Model Deployer, check out the SDK Docs.
PreviousBentoML
NextDevelop a Custom Model Deployer
Last updated 15 days ago'
- 'Set up CI/CD
Managing the lifecycle of a ZenML pipeline with Continuous Integration and Delivery
Until now, we have been executing ZenML pipelines locally. While this is a good
mode of operating pipelines, in production it is often desirable to mediate runs
through a central workflow engine baked into your CI.
This allows data scientists to experiment with data processing and model training
locally and then have code changes automatically tested and validated through
the standard pull request/merge request peer review process. Changes that pass
the CI and code-review are then deployed automatically to production. Here is
how this could look like:
Breaking it down
To illustrate this, let''s walk through how this process might be set up on a
GitHub Repository.
A data scientist wants to make improvements to the ML pipeline. They clone the
repository, create a new branch, and experiment with new models or data processing
steps on their local machine.
Once the data scientist thinks they have improved the pipeline, they create a
pull request for their branch on GitHub. This automatically triggers a GitHub
Action that will run the same pipeline in the staging environment (e.g. a pipeline
running on a cloud stack in GCP), potentially with different test data. As long
as the pipeline does not run successfully in the staging environment, the PR cannot
be merged. The pipeline also generates a set of metrics and test results that
are automatically published to the PR, where they can be peer-reviewed to decide
if the changes should be merged.
Once the PR has been reviewed and passes all checks, the branch is merged into
main. This automatically triggers another GitHub Action that now runs a pipeline
in the production environment, which trains the same model on production data,
runs some checks to compare its performance with the model currently served in
production and then, if all checks pass, automatically deploys the new model.'
- '━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛
```register and connect a Vertex AI Orchestrator Stack Component to the target
GCP projectNOTE: If we do not specify a workload service account, the Vertex AI
Pipelines Orchestrator uses the Compute Engine default service account in the
target project to run pipelines. You must grant this account the Vertex AI Service
Agent role, otherwise the pipelines will fail. More information on other configurations
possible for the Vertex AI Orchestrator can be found here.Copyzenml orchestrator
register vertex-ai-zenml-core --flavor=vertex --location=europe-west1 --synchronous=true
Example Command Output
```text
Running with active workspace: ''default'' (repository)
Running with active stack: ''default'' (repository)
Successfully registered orchestrator `vertex-ai-zenml-core`.
```
```sh
zenml orchestrator connect vertex-ai-zenml-core --connector vertex-ai-zenml-core
```
Example Command Output
```text
Running with active workspace: ''default'' (repository)
Running with active stack: ''default'' (repository)
Successfully connected orchestrator `vertex-ai-zenml-core` to the following resources:
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┓
┃ CONNECTOR ID │ CONNECTOR NAME │ CONNECTOR TYPE
│ RESOURCE TYPE │ RESOURCE NAMES ┃
┠──────────────────────────────────────┼──────────────────────┼────────────────┼────────────────┼────────────────┨
┃ f97671b9-8c73-412b-bf5e-4b7c48596f5f │ vertex-ai-zenml-core │ 🔵 gcp │
🔵 gcp-generic │ zenml-core ┃
┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛
```
Register and connect a GCP Container Registry Stack Component to a GCR container
registry:Copyzenml container-registry register gcr-zenml-core --flavor gcp --uri=gcr.io/zenml-core
Example Command Output
```text
Running with active workspace: ''default'' (repository)'
- source_sentence: How can I develop a custom step operator in ZenML?
sentences:
- 'Develop a Custom Step Operator
Learning how to develop a custom step operator.
Before diving into the specifics of this component type, it is beneficial to familiarize
yourself with our general guide to writing custom component flavors in ZenML.
This guide provides an essential understanding of ZenML''s component flavor concepts.
Base Abstraction
The BaseStepOperator is the abstract base class that needs to be subclassed in
order to run specific steps of your pipeline in a separate environment. As step
operators can come in many shapes and forms, the base class exposes a deliberately
basic and generic interface:
from abc import ABC, abstractmethod
from typing import List, Type
from zenml.enums import StackComponentType
from zenml.stack import StackComponent, StackComponentConfig, Flavor
from zenml.config.step_run_info import StepRunInfo
class BaseStepOperatorConfig(StackComponentConfig):
"""Base config for step operators."""
class BaseStepOperator(StackComponent, ABC):
"""Base class for all ZenML step operators."""
@abstractmethod
def launch(
self,
info: StepRunInfo,
entrypoint_command: List[str],
) -> None:
"""Abstract method to execute a step.
Subclasses must implement this method and launch a **synchronous**
job that executes the `entrypoint_command`.
Args:
info: Information about the step run.
entrypoint_command: Command that executes the step.
"""
class BaseStepOperatorFlavor(Flavor):
"""Base class for all ZenML step operator flavors."""
@property
@abstractmethod
def name(self) -> str:
"""Returns the name of the flavor."""
@property
def type(self) -> StackComponentType:
"""Returns the flavor type."""
return StackComponentType.STEP_OPERATOR
@property
def config_class(self) -> Type[BaseStepOperatorConfig]:
"""Returns the config class for this flavor."""
return BaseStepOperatorConfig
@property
@abstractmethod
def implementation_class(self) -> Type[BaseStepOperator]:'
- '-grade deployments.
Installing the mlstacks extraTo install mlstacks, either run pip install mlstacks
or pip install "zenml[mlstacks]" to install it along with ZenML.
MLStacks uses Terraform on the backend to manage infrastructure. You will need
to have Terraform installed. Please visit the Terraform docs for installation
instructions.
MLStacks also uses Helm to deploy Kubernetes resources. You will need to have
Helm installed. Please visit the Helm docs for installation instructions.
Deploying a stack component
The ZenML CLI allows you to deploy individual stack components using the deploy
subcommand which is implemented for all supported stack components. You can find
the list of supported stack components here.
Deploying a stack
For deploying a full stack, use the zenml stack deploy command. See the stack
deployment page for more details of which cloud providers and stack components
are supported.
How does mlstacks work?
MLStacks is built around the concept of a stack specification. A stack specification
is a YAML file that describes the stack and includes references to component specification
files. A component specification is a YAML file that describes a component. (Currently
all deployments of components (in various combinations) must be defined within
the context of a stack.)
ZenML handles the creation of stack specifications for you when you run one of
the deploy subcommands using the CLI. A valid specification is generated and used
by mlstacks to deploy your stack using Terraform. The Terraform definitions and
state are stored in your global configuration directory along with any state files
generated while deploying your stack.
Your configuration directory could be in a number of different places depending
on your operating system, but read more about it in the Click docs to see which
location applies to your situation.
Deploy stack components individuallyIndividually deploying different stack components.'
- 'rray": [[1,2,3,4]] } }''
Using a Service ConnectorTo set up the Seldon Core Model Deployer to authenticate
to a remote Kubernetes cluster, it is recommended to leverage the many features
provided by the Service Connectors such as auto-configuration, local client login,
best security practices regarding long-lived credentials and fine-grained access
control and reusing the same credentials across multiple stack components.
Depending on where your target Kubernetes cluster is running, you can use one
of the following Service Connectors:
the AWS Service Connector, if you are using an AWS EKS cluster.
the GCP Service Connector, if you are using a GKE cluster.
the Azure Service Connector, if you are using an AKS cluster.
the generic Kubernetes Service Connector for any other Kubernetes cluster.
If you don''t already have a Service Connector configured in your ZenML deployment,
you can register one using the interactive CLI command. You have the option to
configure a Service Connector that can be used to access more than one Kubernetes
cluster or even more than one type of cloud resource:
zenml service-connector register -i
A non-interactive CLI example that leverages the AWS CLI configuration on your
local machine to auto-configure an AWS Service Connector targeting a single EKS
cluster is:
zenml service-connector register <CONNECTOR_NAME> --type aws --resource-type kubernetes-cluster
--resource-name <EKS_CLUSTER_NAME> --auto-configure
Example Command Output
$ zenml service-connector register eks-zenhacks --type aws --resource-type kubernetes-cluster
--resource-id zenhacks-cluster --auto-configure
⠼ Registering service connector ''eks-zenhacks''...
Successfully registered service connector `eks-zenhacks` with access to the following
resources:
┏━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━┓
┃ RESOURCE TYPE │ RESOURCE NAMES ┃
┠───────────────────────┼──────────────────┨
┃ 🌀 kubernetes-cluster │ zenhacks-cluster ┃
┗━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━┛'
model-index:
- name: zenml/finetuned-snowflake-arctic-embed-m
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 384
type: dim_384
metrics:
- type: cosine_accuracy@1
value: 0.29518072289156627
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6385542168674698
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7228915662650602
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7891566265060241
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.29518072289156627
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.21285140562248994
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14457831325301201
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0789156626506024
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.29518072289156627
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6385542168674698
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7228915662650602
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7891566265060241
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5552191347520903
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.47847819850831885
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.48706201897841145
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.3253012048192771
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6144578313253012
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6987951807228916
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7891566265060241
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3253012048192771
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2048192771084337
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1397590361445783
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0789156626506024
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3253012048192771
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6144578313253012
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6987951807228916
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7891566265060241
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5597682297824715
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4859987569324918
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4930658557873217
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.2710843373493976
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5662650602409639
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6385542168674698
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7891566265060241
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2710843373493976
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.18875502008032125
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12771084337349395
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0789156626506024
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.2710843373493976
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5662650602409639
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6385542168674698
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7891566265060241
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5242689178594545
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4403614457831327
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4468744710389297
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.25301204819277107
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4759036144578313
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5783132530120482
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6626506024096386
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.25301204819277107
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15863453815261042
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11566265060240961
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06626506024096386
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.25301204819277107
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4759036144578313
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5783132530120482
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6626506024096386
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.45397796379806826
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.38746175176898084
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.39859357699776915
name: Cosine Map@100
---
# zenml/finetuned-snowflake-arctic-embed-m
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision 71bc94c8f9ea1e54fba11167004205a65e5da2cc -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("zenml/finetuned-snowflake-arctic-embed-m")
# Run inference
sentences = [
'How can I develop a custom step operator in ZenML?',
'Develop a Custom Step Operator\n\nLearning how to develop a custom step operator.\n\nBefore diving into the specifics of this component type, it is beneficial to familiarize yourself with our general guide to writing custom component flavors in ZenML. This guide provides an essential understanding of ZenML\'s component flavor concepts.\n\nBase Abstraction\n\nThe BaseStepOperator is the abstract base class that needs to be subclassed in order to run specific steps of your pipeline in a separate environment. As step operators can come in many shapes and forms, the base class exposes a deliberately basic and generic interface:\n\nfrom abc import ABC, abstractmethod\n\nfrom typing import List, Type\n\nfrom zenml.enums import StackComponentType\n\nfrom zenml.stack import StackComponent, StackComponentConfig, Flavor\n\nfrom zenml.config.step_run_info import StepRunInfo\n\nclass BaseStepOperatorConfig(StackComponentConfig):\n\n"""Base config for step operators."""\n\nclass BaseStepOperator(StackComponent, ABC):\n\n"""Base class for all ZenML step operators."""\n\n@abstractmethod\n\ndef launch(\n\nself,\n\ninfo: StepRunInfo,\n\nentrypoint_command: List[str],\n\n) -> None:\n\n"""Abstract method to execute a step.\n\nSubclasses must implement this method and launch a **synchronous**\n\njob that executes the `entrypoint_command`.\n\nArgs:\n\ninfo: Information about the step run.\n\nentrypoint_command: Command that executes the step.\n\n"""\n\nclass BaseStepOperatorFlavor(Flavor):\n\n"""Base class for all ZenML step operator flavors."""\n\n@property\n\n@abstractmethod\n\ndef name(self) -> str:\n\n"""Returns the name of the flavor."""\n\n@property\n\ndef type(self) -> StackComponentType:\n\n"""Returns the flavor type."""\n\nreturn StackComponentType.STEP_OPERATOR\n\n@property\n\ndef config_class(self) -> Type[BaseStepOperatorConfig]:\n\n"""Returns the config class for this flavor."""\n\nreturn BaseStepOperatorConfig\n\n@property\n\n@abstractmethod\n\ndef implementation_class(self) -> Type[BaseStepOperator]:',
'rray": [[1,2,3,4]] } }\'\n\nUsing a Service ConnectorTo set up the Seldon Core Model Deployer to authenticate to a remote Kubernetes cluster, it is recommended to leverage the many features provided by the Service Connectors such as auto-configuration, local client login, best security practices regarding long-lived credentials and fine-grained access control and reusing the same credentials across multiple stack components.\n\nDepending on where your target Kubernetes cluster is running, you can use one of the following Service Connectors:\n\nthe AWS Service Connector, if you are using an AWS EKS cluster.\n\nthe GCP Service Connector, if you are using a GKE cluster.\n\nthe Azure Service Connector, if you are using an AKS cluster.\n\nthe generic Kubernetes Service Connector for any other Kubernetes cluster.\n\nIf you don\'t already have a Service Connector configured in your ZenML deployment, you can register one using the interactive CLI command. You have the option to configure a Service Connector that can be used to access more than one Kubernetes cluster or even more than one type of cloud resource:\n\nzenml service-connector register -i\n\nA non-interactive CLI example that leverages the AWS CLI configuration on your local machine to auto-configure an AWS Service Connector targeting a single EKS cluster is:\n\nzenml service-connector register <CONNECTOR_NAME> --type aws --resource-type kubernetes-cluster --resource-name <EKS_CLUSTER_NAME> --auto-configure\n\nExample Command Output\n\n$ zenml service-connector register eks-zenhacks --type aws --resource-type kubernetes-cluster --resource-id zenhacks-cluster --auto-configure\n\n⠼ Registering service connector \'eks-zenhacks\'...\n\nSuccessfully registered service connector `eks-zenhacks` with access to the following resources:\n\n┏━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━┓\n\n┃ RESOURCE TYPE │ RESOURCE NAMES ┃\n\n┠───────────────────────┼──────────────────┨\n\n┃ 🌀 kubernetes-cluster │ zenhacks-cluster ┃\n\n┗━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━┛',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_384`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.2952 |
| cosine_accuracy@3 | 0.6386 |
| cosine_accuracy@5 | 0.7229 |
| cosine_accuracy@10 | 0.7892 |
| cosine_precision@1 | 0.2952 |
| cosine_precision@3 | 0.2129 |
| cosine_precision@5 | 0.1446 |
| cosine_precision@10 | 0.0789 |
| cosine_recall@1 | 0.2952 |
| cosine_recall@3 | 0.6386 |
| cosine_recall@5 | 0.7229 |
| cosine_recall@10 | 0.7892 |
| cosine_ndcg@10 | 0.5552 |
| cosine_mrr@10 | 0.4785 |
| **cosine_map@100** | **0.4871** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.3253 |
| cosine_accuracy@3 | 0.6145 |
| cosine_accuracy@5 | 0.6988 |
| cosine_accuracy@10 | 0.7892 |
| cosine_precision@1 | 0.3253 |
| cosine_precision@3 | 0.2048 |
| cosine_precision@5 | 0.1398 |
| cosine_precision@10 | 0.0789 |
| cosine_recall@1 | 0.3253 |
| cosine_recall@3 | 0.6145 |
| cosine_recall@5 | 0.6988 |
| cosine_recall@10 | 0.7892 |
| cosine_ndcg@10 | 0.5598 |
| cosine_mrr@10 | 0.486 |
| **cosine_map@100** | **0.4931** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.2711 |
| cosine_accuracy@3 | 0.5663 |
| cosine_accuracy@5 | 0.6386 |
| cosine_accuracy@10 | 0.7892 |
| cosine_precision@1 | 0.2711 |
| cosine_precision@3 | 0.1888 |
| cosine_precision@5 | 0.1277 |
| cosine_precision@10 | 0.0789 |
| cosine_recall@1 | 0.2711 |
| cosine_recall@3 | 0.5663 |
| cosine_recall@5 | 0.6386 |
| cosine_recall@10 | 0.7892 |
| cosine_ndcg@10 | 0.5243 |
| cosine_mrr@10 | 0.4404 |
| **cosine_map@100** | **0.4469** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.253 |
| cosine_accuracy@3 | 0.4759 |
| cosine_accuracy@5 | 0.5783 |
| cosine_accuracy@10 | 0.6627 |
| cosine_precision@1 | 0.253 |
| cosine_precision@3 | 0.1586 |
| cosine_precision@5 | 0.1157 |
| cosine_precision@10 | 0.0663 |
| cosine_recall@1 | 0.253 |
| cosine_recall@3 | 0.4759 |
| cosine_recall@5 | 0.5783 |
| cosine_recall@10 | 0.6627 |
| cosine_ndcg@10 | 0.454 |
| cosine_mrr@10 | 0.3875 |
| **cosine_map@100** | **0.3986** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 1,490 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 21.08 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 374.42 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| positive | anchor |
|:------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>How can I configure SSH keys for authentication in the HyperAI orchestrator using the ZenML framework?</code> | <code>authentication.<br><br>ED25519 key based authentication.SSH private keys configured in the connector will be distributed to all clients that use them to run pipelines with the HyperAI orchestrator. SSH keys are long-lived credentials that give unrestricted access to HyperAI instances.<br><br>When configuring the Service Connector, it is required to provide at least one hostname via hostnames and the username with which to login. Optionally, it is possible to provide an ssh_passphrase if applicable. This way, it is possible to use the HyperAI service connector in multiple ways:<br><br>Create one service connector per HyperAI instance with different SSH keys.<br><br>Configure a reused SSH key just once for multiple HyperAI instances, then select the individual instance when creating the HyperAI orchestrator component.<br><br>Auto-configuration<br><br>This Service Connector does not support auto-discovery and extraction of authentication credentials from HyperAI instances. If this feature is useful to you or your organization, please let us know by messaging us in Slack or creating an issue on GitHub.<br><br>Stack Components use<br><br>The HyperAI Service Connector can be used by the HyperAI Orchestrator to deploy pipeline runs to HyperAI instances.<br><br>PreviousAzure Service Connector<br><br>NextManage stacks<br><br>Last updated 19 days ago</code> |
| <code>What additional settings are required to enable CUDA for GPU-backed hardware when using the LocalDockerOrchestratorSettings?</code> | <code>or.local_docker": LocalDockerOrchestratorSettings(run_args={"cpu_count": 3}<br><br>@pipeline(settings=settings)<br><br>def simple_pipeline():<br><br>return_one()<br><br>Enabling CUDA for GPU-backed hardware<br><br>Note that if you wish to use this orchestrator to run steps on a GPU, you will need to follow the instructions on this page to ensure that it works. It requires adding some extra settings customization and is essential to enable CUDA for the GPU to give its full acceleration.<br><br>PreviousLocal Orchestrator<br><br>NextKubeflow Orchestrator<br><br>Last updated 15 days ago</code> |
| <code>What is the SECRET ID for the gcs-bucket resource type?</code> | <code>──────────┼──────────────────────────────────────┨┃ RESOURCE TYPES │ 📦 gcs-bucket ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ RESOURCE NAME │ <multiple><br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ SECRET ID │ 0d0a42bb-40a4-4f43-af9e-6342eeca3f28 ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ SESSION DURATION │ N/A ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ EXPIRES IN │ N/A ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ OWNER │ default ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ WORKSPACE │ default ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ SHARED │ ➖ ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ CREATED_AT │ 2023-05-19 08:15:48.056937 ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ UPDATED_AT │ 2023-05-19 08:15:48.056940 ┃<br><br>┗━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛<br><br>Configuration<br><br>┏━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━┓<br><br>┃ PROPERTY │ VALUE ┃<br><br>┠──────────────────────┼────────────┨<br><br>┃ project_id │ zenml-core ┃<br><br>┠──────────────────────┼────────────┨<br><br>┃ service_account_json │ [HIDDEN] ┃<br><br>┗━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━┛<br><br>GCP Service Account impersonation<br><br>Generates temporary STS credentials by impersonating another GCP service account.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: True
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 |
|:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.6667 | 1 | 0.3889 | 0.4114 | 0.4339 | 0.2694 |
| 1.9583 | 3 | 0.4463 | 0.4920 | 0.4852 | 0.3876 |
| **2.5833** | **4** | **0.4469** | **0.4931** | **0.4871** | **0.3986** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->