File size: 72,498 Bytes
87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 1782369 cb42ac1 1782369 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 1782369 cb42ac1 1782369 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 87d67d4 cb42ac1 540ab9d cb42ac1 540ab9d 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 b0887ab cb42ac1 87d67d4 1782369 cb42ac1 1782369 cb42ac1 1782369 540ab9d cb42ac1 1782369 cb42ac1 1782369 cb42ac1 540ab9d 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 87d67d4 cb42ac1 87d67d4 1782369 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 1782369 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 1782369 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 b0887ab cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 540ab9d 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 1782369 cb42ac1 1782369 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 cb42ac1 1782369 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d cb42ac1 540ab9d b0887ab cb42ac1 b0887ab cb42ac1 b0887ab cb42ac1 b0887ab cb42ac1 b0887ab cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 b0887ab 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 b0887ab 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 b0887ab 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 b0887ab 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 b0887ab 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 b0887ab cb42ac1 b0887ab cb42ac1 b0887ab cb42ac1 87d67d4 1aace24 cb42ac1 b0887ab cb42ac1 b0887ab cb42ac1 b0887ab cb42ac1 87d67d4 cb42ac1 87d67d4 1782369 cb42ac1 87d67d4 540ab9d cb42ac1 87d67d4 cb42ac1 87d67d4 cb42ac1 87d67d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 |
---
base_model: Snowflake/snowflake-arctic-embed-m
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1490
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: How does ZenML facilitate connecting your deployment to various
cloud providers and infrastructure services?
sentences:
- '🔌Connect services (AWS, GCP, Azure, K8s etc)
Connect your ZenML deployment to a cloud provider and other infrastructure services
and resources.
A production-grade MLOps platform involves interactions between a diverse combination
of third-party libraries and external services sourced from various different
vendors. One of the most daunting hurdles in building and operating an MLOps platform
composed of multiple components is configuring and maintaining uninterrupted and
secured access to the infrastructure resources and services that it consumes.
In layman''s terms, your pipeline code needs to "connect" to a handful of different
services to run successfully and do what it''s designed to do. For example, it
might need to connect to a private AWS S3 bucket to read and store artifacts,
a Kubernetes cluster to execute steps with Kubeflow or Tekton, and a private GCR
container registry to build and store container images. ZenML makes this possible
by allowing you to configure authentication information and credentials embedded
directly into your Stack Components, but this doesn''t scale well when you have
more than a few Stack Components and has many other disadvantages related to usability
and security.
Gaining access to infrastructure resources and services requires knowledge about
the different authentication and authorization mechanisms and involves configuring
and maintaining valid credentials. It gets even more complicated when these different
services need to access each other. For instance, the Kubernetes container running
your pipeline step needs access to the S3 bucket to store artifacts or needs to
access a cloud service like AWS SageMaker, VertexAI, or AzureML to run a CPU/GPU
intensive task like training a model.'
- ' ┃┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ ID │ e316bcb3-6659-467b-81e5-5ec25bfd36b0 ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ NAME │ aws-sts-token ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ TYPE │ 🔶 aws ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ AUTH METHOD │ sts-token ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ RESOURCE TYPES │ 🔶 aws-generic, 📦 s3-bucket, 🌀 kubernetes-cluster, 🐳 docker-registry
┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ RESOURCE NAME │ <multiple> ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ SECRET ID │ 971318c9-8db9-4297-967d-80cda070a121 ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ SESSION DURATION │ N/A ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ EXPIRES IN │ 11h58m17s ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ OWNER │ default ┃'
- 'io ┃
┗━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛If you already have one or more Docker
Service Connectors configured in your ZenML deployment, you can check which of
them can be used to access the container registry you want to use for your Default
Container Registry by running e.g.:
zenml service-connector list-resources --connector-type docker --resource-id <REGISTRY_URI>
Example Command Output
$ zenml service-connector list-resources --connector-type docker --resource-id
docker.io
The resource with name ''docker.io'' can be accessed by ''docker'' service connectors
configured in your workspace:
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┓
┃ CONNECTOR ID │ CONNECTOR NAME │ CONNECTOR TYPE │ RESOURCE
TYPE │ RESOURCE NAMES ┃
┠──────────────────────────────────────┼────────────────┼────────────────┼────────────────────┼────────────────┨
┃ cf55339f-dbc8-4ee6-862e-c25aff411292 │ dockerhub │ 🐳 docker │ 🐳 docker-registry
│ docker.io ┃
┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛
After having set up or decided on a Docker Service Connector to use to connect
to the target container registry, you can register the Docker Container Registry
as follows:
# Register the container registry and reference the target registry URI
zenml container-registry register <CONTAINER_REGISTRY_NAME> -f default \
--uri=<REGISTRY_URL>
# Connect the container registry to the target registry via a Docker Service Connector
zenml container-registry connect <CONTAINER_REGISTRY_NAME> -i
A non-interactive version that connects the Default Container Registry to a target
registry through a Docker Service Connector:
zenml container-registry connect <CONTAINER_REGISTRY_NAME> --connector <CONNECTOR_ID>
Example Command Output
$ zenml container-registry connect dockerhub --connector dockerhub'
- source_sentence: How can I configure the orchestrator settings for each cloud provider
in ZenML?
sentences:
- 'kip scoping its Resource Type during registration.a multi-instance Service Connector
instance can be configured once and used to gain access to multiple resources
of the same type, each identifiable by a Resource Name. Not all types of connectors
and not all types of resources support multiple instances. Some Service Connectors
Types like the generic Kubernetes and Docker connector types only allow single-instance
configurations: a Service Connector instance can only be used to access a single
Kubernetes cluster and a single Docker registry. To configure a multi-instance
Service Connector, you can simply skip scoping its Resource Name during registration.
The following is an example of configuring a multi-type AWS Service Connector
instance capable of accessing multiple AWS resources of different types:
zenml service-connector register aws-multi-type --type aws --auto-configure
Example Command Output
⠋ Registering service connector ''aws-multi-type''...
Successfully registered service connector `aws-multi-type` with access to the
following resources:
┏━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ RESOURCE TYPE │ RESOURCE NAMES ┃
┠───────────────────────┼──────────────────────────────────────────────┨
┃ 🔶 aws-generic │ us-east-1 ┃
┠───────────────────────┼──────────────────────────────────────────────┨
┃ 📦 s3-bucket │ s3://aws-ia-mwaa-715803424590 ┃
┃ │ s3://zenfiles ┃
┃ │ s3://zenml-demos ┃
┃ │ s3://zenml-generative-chat ┃
┃ │ s3://zenml-public-datasets ┃
┃ │ s3://zenml-public-swagger-spec ┃
┠───────────────────────┼──────────────────────────────────────────────┨
┃ 🌀 kubernetes-cluster │ zenhacks-cluster ┃'
- 'ister <STACK_NAME> -a <AZURE_STORE_NAME> ... --setWhen you register the Azure
Artifact Store, you can create a ZenML Secret to store a variety of Azure credentials
and then reference it in the Artifact Store configuration:
to use an Azure storage account key , set account_name to your account name and
one of account_key or sas_token to the Azure key or SAS token value as attributes
in the ZenML secret
to use an Azure storage account key connection string , configure the connection_string
attribute in the ZenML secret to your Azure Storage Key connection string
to use Azure Service Principal credentials , create an Azure Service Principal
and then set account_name to your account name and client_id, client_secret and
tenant_id to the client ID, secret and tenant ID of your service principal in
the ZenML secret
This method has some advantages over the implicit authentication method:
you don''t need to install and configure the Azure CLI on your host
you don''t need to care about enabling your other stack components (orchestrators,
step operators and model deployers) to have access to the artifact store through
Azure Managed Identities
you can combine the Azure artifact store with other stack components that are
not running in Azure
Configuring Azure credentials in a ZenML secret and then referencing them in the
Artifact Store configuration could look like this:
# Store the Azure storage account key in a ZenML secret
zenml secret create az_secret \
--account_name=''<YOUR_AZURE_ACCOUNT_NAME>'' \
--account_key=''<YOUR_AZURE_ACCOUNT_KEY>''
# or if you want to use a connection string
zenml secret create az_secret \
--connection_string=''<YOUR_AZURE_CONNECTION_STRING>''
# or if you want to use Azure ServicePrincipal credentials
zenml secret create az_secret \
--account_name=''<YOUR_AZURE_ACCOUNT_NAME>'' \
--tenant_id=''<YOUR_AZURE_TENANT_ID>'' \
--client_id=''<YOUR_AZURE_CLIENT_ID>'' \
--client_secret=''<YOUR_AZURE_CLIENT_SECRET>'''
- '. If not set, the cluster will not be autostopped.down: Tear down the cluster
after all jobs finish (successfully or abnormally). If idle_minutes_to_autostop
is also set, the cluster will be torn down after the specified idle time. Note
that if errors occur during provisioning/data syncing/setting up, the cluster
will not be torn down for debugging purposes.
stream_logs: If True, show the logs in the terminal as they are generated while
the cluster is running.
docker_run_args: Additional arguments to pass to the docker run command. For example,
[''--gpus=all''] to use all GPUs available on the VM.
The following code snippets show how to configure the orchestrator settings for
each cloud provider:
Code Example:
from zenml.integrations.skypilot_aws.flavors.skypilot_orchestrator_aws_vm_flavor
import SkypilotAWSOrchestratorSettings
skypilot_settings = SkypilotAWSOrchestratorSettings(
cpus="2",
memory="16",
accelerators="V100:2",
accelerator_args={"tpu_vm": True, "runtime_version": "tpu-vm-base"},
use_spot=True,
spot_recovery="recovery_strategy",
region="us-west-1",
zone="us-west1-a",
image_id="ami-1234567890abcdef0",
disk_size=100,
disk_tier="high",
cluster_name="my_cluster",
retry_until_up=True,
idle_minutes_to_autostop=60,
down=True,
stream_logs=True
docker_run_args=["--gpus=all"]
@pipeline(
settings={
"orchestrator.vm_aws": skypilot_settings
Code Example:
from zenml.integrations.skypilot_gcp.flavors.skypilot_orchestrator_gcp_vm_flavor
import SkypilotGCPOrchestratorSettings
skypilot_settings = SkypilotGCPOrchestratorSettings(
cpus="2",
memory="16",
accelerators="V100:2",
accelerator_args={"tpu_vm": True, "runtime_version": "tpu-vm-base"},
use_spot=True,
spot_recovery="recovery_strategy",
region="us-west1",
zone="us-west1-a",
image_id="ubuntu-pro-2004-focal-v20231101",
disk_size=100,
disk_tier="high",
cluster_name="my_cluster",
retry_until_up=True,
idle_minutes_to_autostop=60,
down=True,
stream_logs=True
@pipeline(
settings={
"orchestrator.vm_gcp": skypilot_settings'
- source_sentence: What command do you use to create the resources after setting up
the roleRef for a Kubernetes cluster?
sentences:
- 'pace: spark-namespace
roleRef:
kind: ClusterRolename: edit
apiGroup: rbac.authorization.k8s.io
---
And then execute the following command to create the resources:
aws eks --region=$REGION update-kubeconfig --name=$EKS_CLUSTER_NAME
kubectl create -f rbac.yaml
Lastly, note down the namespace and the name of the service account since you
will need them when registering the stack component in the next step.
How to use it
To use the KubernetesSparkStepOperator, you need:
the ZenML spark integration. If you haven''t installed it already, runCopyzenml
integration install spark
Docker installed and running.
A remote artifact store as part of your stack.
A remote container registry as part of your stack.
A Kubernetes cluster deployed.
We can then register the step operator and use it in our active stack:
zenml step-operator register spark_step_operator \
--flavor=spark-kubernetes \
--master=k8s://$EKS_API_SERVER_ENDPOINT \
--namespace=<SPARK_KUBERNETES_NAMESPACE> \
--service_account=<SPARK_KUBERNETES_SERVICE_ACCOUNT>
# Register the stack
zenml stack register spark_stack \
o default \
s spark_step_operator \
a spark_artifact_store \
c spark_container_registry \
i local_builder \
--set
Once you added the step operator to your active stack, you can use it to execute
individual steps of your pipeline by specifying it in the @step decorator as follows:
from zenml import step
@step(step_operator=<STEP_OPERATOR_NAME>)
def step_on_spark(...) -> ...:
"""Some step that should run with Spark on Kubernetes."""
...
After successfully running any step with a KubernetesSparkStepOperator, you should
be able to see that a Spark driver pod was created in your cluster for each pipeline
step when running kubectl get pods -n $KUBERNETES_NAMESPACE.
Instead of hardcoding a step operator name, you can also use the Client to dynamically
use the step operator of your active stack:
from zenml.client import Client
step_operator = Client().active_stack.step_operator
@step(step_operator=step_operator.name)'
- 'et_historical_features(entity_dict, features)
...Note that ZenML''s use of Pydantic to serialize and deserialize inputs stored
in the ZenML metadata means that we are limited to basic data types. Pydantic
cannot handle Pandas DataFrames, for example, or datetime values, so in the above
code you can see that we have to convert them at various points.
For more information and a full list of configurable attributes of the Feast feature
store, check out the SDK Docs .
PreviousFeature Stores
NextDevelop a Custom Feature Store
Last updated 8 days ago'
- 'to get a quick global overview of our performance.# passing the results from
all our previous evaluation steps
@step(enable_cache=False)
def visualize_evaluation_results(
small_retrieval_eval_failure_rate: float,
small_retrieval_eval_failure_rate_reranking: float,
full_retrieval_eval_failure_rate: float,
full_retrieval_eval_failure_rate_reranking: float,
failure_rate_bad_answers: float,
failure_rate_bad_immediate_responses: float,
failure_rate_good_responses: float,
average_toxicity_score: float,
average_faithfulness_score: float,
average_helpfulness_score: float,
average_relevance_score: float,
) -> Optional[Image.Image]:
"""Visualizes the evaluation results."""
step_context = get_step_context()
pipeline_run_name = step_context.pipeline_run.name
normalized_scores = [
score / 20
for score in [
small_retrieval_eval_failure_rate,
small_retrieval_eval_failure_rate_reranking,
full_retrieval_eval_failure_rate,
full_retrieval_eval_failure_rate_reranking,
failure_rate_bad_answers,
scores = normalized_scores + [
failure_rate_bad_immediate_responses,
failure_rate_good_responses,
average_toxicity_score,
average_faithfulness_score,
average_helpfulness_score,
average_relevance_score,
labels = [
"Small Retrieval Eval Failure Rate",
"Small Retrieval Eval Failure Rate Reranking",
"Full Retrieval Eval Failure Rate",
"Full Retrieval Eval Failure Rate Reranking",
"Failure Rate Bad Answers",
"Failure Rate Bad Immediate Responses",
"Failure Rate Good Responses",
"Average Toxicity Score",
"Average Faithfulness Score",
"Average Helpfulness Score",
"Average Relevance Score",
# Create a new figure and axis
fig, ax = plt.subplots(figsize=(10, 6))
# Plot the horizontal bar chart
y_pos = np.arange(len(labels))
ax.barh(y_pos, scores, align="center")
ax.set_yticks(y_pos)
ax.set_yticklabels(labels)
ax.invert_yaxis() # Labels read top-to-bottom
ax.set_xlabel("Score")
ax.set_xlim(0, 5)
ax.set_title(f"Evaluation Metrics for {pipeline_run_name}")
# Adjust the layout
plt.tight_layout()'
- source_sentence: What is the command to register and connect a Vertex AI Orchestrator
Stack Component to the target GCP project using ZenML?
sentences:
- 'ggingFaceModelDeployer.get_active_model_deployer()# fetch existing services with
same pipeline name, step name and model name
existing_services = model_deployer.find_model_server(
pipeline_name=pipeline_name,
pipeline_step_name=pipeline_step_name,
model_name=model_name,
running=running,
if not existing_services:
raise RuntimeError(
f"No Hugging Face inference endpoint deployed by step "
f"''{pipeline_step_name}'' in pipeline ''{pipeline_name}'' with name "
f"''{model_name}'' is currently running."
return existing_services[0]
# Use the service for inference
@step
def predictor(
service: HuggingFaceDeploymentService,
data: str
) -> Annotated[str, "predictions"]:
"""Run a inference request against a prediction service"""
prediction = service.predict(data)
return prediction
@pipeline
def huggingface_deployment_inference_pipeline(
pipeline_name: str, pipeline_step_name: str = "huggingface_model_deployer_step",
):
inference_data = ...
model_deployment_service = prediction_service_loader(
pipeline_name=pipeline_name,
pipeline_step_name=pipeline_step_name,
predictions = predictor(model_deployment_service, inference_data)
For more information and a full list of configurable attributes of the Hugging
Face Model Deployer, check out the SDK Docs.
PreviousBentoML
NextDevelop a Custom Model Deployer
Last updated 15 days ago'
- 'Set up CI/CD
Managing the lifecycle of a ZenML pipeline with Continuous Integration and Delivery
Until now, we have been executing ZenML pipelines locally. While this is a good
mode of operating pipelines, in production it is often desirable to mediate runs
through a central workflow engine baked into your CI.
This allows data scientists to experiment with data processing and model training
locally and then have code changes automatically tested and validated through
the standard pull request/merge request peer review process. Changes that pass
the CI and code-review are then deployed automatically to production. Here is
how this could look like:
Breaking it down
To illustrate this, let''s walk through how this process might be set up on a
GitHub Repository.
A data scientist wants to make improvements to the ML pipeline. They clone the
repository, create a new branch, and experiment with new models or data processing
steps on their local machine.
Once the data scientist thinks they have improved the pipeline, they create a
pull request for their branch on GitHub. This automatically triggers a GitHub
Action that will run the same pipeline in the staging environment (e.g. a pipeline
running on a cloud stack in GCP), potentially with different test data. As long
as the pipeline does not run successfully in the staging environment, the PR cannot
be merged. The pipeline also generates a set of metrics and test results that
are automatically published to the PR, where they can be peer-reviewed to decide
if the changes should be merged.
Once the PR has been reviewed and passes all checks, the branch is merged into
main. This automatically triggers another GitHub Action that now runs a pipeline
in the production environment, which trains the same model on production data,
runs some checks to compare its performance with the model currently served in
production and then, if all checks pass, automatically deploys the new model.'
- '━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛
```register and connect a Vertex AI Orchestrator Stack Component to the target
GCP projectNOTE: If we do not specify a workload service account, the Vertex AI
Pipelines Orchestrator uses the Compute Engine default service account in the
target project to run pipelines. You must grant this account the Vertex AI Service
Agent role, otherwise the pipelines will fail. More information on other configurations
possible for the Vertex AI Orchestrator can be found here.Copyzenml orchestrator
register vertex-ai-zenml-core --flavor=vertex --location=europe-west1 --synchronous=true
Example Command Output
```text
Running with active workspace: ''default'' (repository)
Running with active stack: ''default'' (repository)
Successfully registered orchestrator `vertex-ai-zenml-core`.
```
```sh
zenml orchestrator connect vertex-ai-zenml-core --connector vertex-ai-zenml-core
```
Example Command Output
```text
Running with active workspace: ''default'' (repository)
Running with active stack: ''default'' (repository)
Successfully connected orchestrator `vertex-ai-zenml-core` to the following resources:
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┓
┃ CONNECTOR ID │ CONNECTOR NAME │ CONNECTOR TYPE
│ RESOURCE TYPE │ RESOURCE NAMES ┃
┠──────────────────────────────────────┼──────────────────────┼────────────────┼────────────────┼────────────────┨
┃ f97671b9-8c73-412b-bf5e-4b7c48596f5f │ vertex-ai-zenml-core │ 🔵 gcp │
🔵 gcp-generic │ zenml-core ┃
┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛
```
Register and connect a GCP Container Registry Stack Component to a GCR container
registry:Copyzenml container-registry register gcr-zenml-core --flavor gcp --uri=gcr.io/zenml-core
Example Command Output
```text
Running with active workspace: ''default'' (repository)'
- source_sentence: How can I develop a custom step operator in ZenML?
sentences:
- 'Develop a Custom Step Operator
Learning how to develop a custom step operator.
Before diving into the specifics of this component type, it is beneficial to familiarize
yourself with our general guide to writing custom component flavors in ZenML.
This guide provides an essential understanding of ZenML''s component flavor concepts.
Base Abstraction
The BaseStepOperator is the abstract base class that needs to be subclassed in
order to run specific steps of your pipeline in a separate environment. As step
operators can come in many shapes and forms, the base class exposes a deliberately
basic and generic interface:
from abc import ABC, abstractmethod
from typing import List, Type
from zenml.enums import StackComponentType
from zenml.stack import StackComponent, StackComponentConfig, Flavor
from zenml.config.step_run_info import StepRunInfo
class BaseStepOperatorConfig(StackComponentConfig):
"""Base config for step operators."""
class BaseStepOperator(StackComponent, ABC):
"""Base class for all ZenML step operators."""
@abstractmethod
def launch(
self,
info: StepRunInfo,
entrypoint_command: List[str],
) -> None:
"""Abstract method to execute a step.
Subclasses must implement this method and launch a **synchronous**
job that executes the `entrypoint_command`.
Args:
info: Information about the step run.
entrypoint_command: Command that executes the step.
"""
class BaseStepOperatorFlavor(Flavor):
"""Base class for all ZenML step operator flavors."""
@property
@abstractmethod
def name(self) -> str:
"""Returns the name of the flavor."""
@property
def type(self) -> StackComponentType:
"""Returns the flavor type."""
return StackComponentType.STEP_OPERATOR
@property
def config_class(self) -> Type[BaseStepOperatorConfig]:
"""Returns the config class for this flavor."""
return BaseStepOperatorConfig
@property
@abstractmethod
def implementation_class(self) -> Type[BaseStepOperator]:'
- '-grade deployments.
Installing the mlstacks extraTo install mlstacks, either run pip install mlstacks
or pip install "zenml[mlstacks]" to install it along with ZenML.
MLStacks uses Terraform on the backend to manage infrastructure. You will need
to have Terraform installed. Please visit the Terraform docs for installation
instructions.
MLStacks also uses Helm to deploy Kubernetes resources. You will need to have
Helm installed. Please visit the Helm docs for installation instructions.
Deploying a stack component
The ZenML CLI allows you to deploy individual stack components using the deploy
subcommand which is implemented for all supported stack components. You can find
the list of supported stack components here.
Deploying a stack
For deploying a full stack, use the zenml stack deploy command. See the stack
deployment page for more details of which cloud providers and stack components
are supported.
How does mlstacks work?
MLStacks is built around the concept of a stack specification. A stack specification
is a YAML file that describes the stack and includes references to component specification
files. A component specification is a YAML file that describes a component. (Currently
all deployments of components (in various combinations) must be defined within
the context of a stack.)
ZenML handles the creation of stack specifications for you when you run one of
the deploy subcommands using the CLI. A valid specification is generated and used
by mlstacks to deploy your stack using Terraform. The Terraform definitions and
state are stored in your global configuration directory along with any state files
generated while deploying your stack.
Your configuration directory could be in a number of different places depending
on your operating system, but read more about it in the Click docs to see which
location applies to your situation.
Deploy stack components individuallyIndividually deploying different stack components.'
- 'rray": [[1,2,3,4]] } }''
Using a Service ConnectorTo set up the Seldon Core Model Deployer to authenticate
to a remote Kubernetes cluster, it is recommended to leverage the many features
provided by the Service Connectors such as auto-configuration, local client login,
best security practices regarding long-lived credentials and fine-grained access
control and reusing the same credentials across multiple stack components.
Depending on where your target Kubernetes cluster is running, you can use one
of the following Service Connectors:
the AWS Service Connector, if you are using an AWS EKS cluster.
the GCP Service Connector, if you are using a GKE cluster.
the Azure Service Connector, if you are using an AKS cluster.
the generic Kubernetes Service Connector for any other Kubernetes cluster.
If you don''t already have a Service Connector configured in your ZenML deployment,
you can register one using the interactive CLI command. You have the option to
configure a Service Connector that can be used to access more than one Kubernetes
cluster or even more than one type of cloud resource:
zenml service-connector register -i
A non-interactive CLI example that leverages the AWS CLI configuration on your
local machine to auto-configure an AWS Service Connector targeting a single EKS
cluster is:
zenml service-connector register <CONNECTOR_NAME> --type aws --resource-type kubernetes-cluster
--resource-name <EKS_CLUSTER_NAME> --auto-configure
Example Command Output
$ zenml service-connector register eks-zenhacks --type aws --resource-type kubernetes-cluster
--resource-id zenhacks-cluster --auto-configure
⠼ Registering service connector ''eks-zenhacks''...
Successfully registered service connector `eks-zenhacks` with access to the following
resources:
┏━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━┓
┃ RESOURCE TYPE │ RESOURCE NAMES ┃
┠───────────────────────┼──────────────────┨
┃ 🌀 kubernetes-cluster │ zenhacks-cluster ┃
┗━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━┛'
model-index:
- name: zenml/finetuned-snowflake-arctic-embed-m
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 384
type: dim_384
metrics:
- type: cosine_accuracy@1
value: 0.29518072289156627
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6385542168674698
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7228915662650602
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7891566265060241
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.29518072289156627
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.21285140562248994
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14457831325301201
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0789156626506024
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.29518072289156627
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6385542168674698
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7228915662650602
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7891566265060241
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5552191347520903
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.47847819850831885
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.48706201897841145
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.3253012048192771
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6144578313253012
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6987951807228916
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7891566265060241
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3253012048192771
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2048192771084337
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1397590361445783
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0789156626506024
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3253012048192771
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6144578313253012
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6987951807228916
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7891566265060241
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5597682297824715
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4859987569324918
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4930658557873217
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.2710843373493976
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5662650602409639
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6385542168674698
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7891566265060241
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2710843373493976
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.18875502008032125
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12771084337349395
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0789156626506024
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.2710843373493976
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5662650602409639
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6385542168674698
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7891566265060241
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5242689178594545
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4403614457831327
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4468744710389297
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.25301204819277107
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4759036144578313
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5783132530120482
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6626506024096386
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.25301204819277107
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15863453815261042
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11566265060240961
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06626506024096386
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.25301204819277107
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4759036144578313
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5783132530120482
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6626506024096386
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.45397796379806826
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.38746175176898084
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.39859357699776915
name: Cosine Map@100
---
# zenml/finetuned-snowflake-arctic-embed-m
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision 71bc94c8f9ea1e54fba11167004205a65e5da2cc -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("zenml/finetuned-snowflake-arctic-embed-m")
# Run inference
sentences = [
'How can I develop a custom step operator in ZenML?',
'Develop a Custom Step Operator\n\nLearning how to develop a custom step operator.\n\nBefore diving into the specifics of this component type, it is beneficial to familiarize yourself with our general guide to writing custom component flavors in ZenML. This guide provides an essential understanding of ZenML\'s component flavor concepts.\n\nBase Abstraction\n\nThe BaseStepOperator is the abstract base class that needs to be subclassed in order to run specific steps of your pipeline in a separate environment. As step operators can come in many shapes and forms, the base class exposes a deliberately basic and generic interface:\n\nfrom abc import ABC, abstractmethod\n\nfrom typing import List, Type\n\nfrom zenml.enums import StackComponentType\n\nfrom zenml.stack import StackComponent, StackComponentConfig, Flavor\n\nfrom zenml.config.step_run_info import StepRunInfo\n\nclass BaseStepOperatorConfig(StackComponentConfig):\n\n"""Base config for step operators."""\n\nclass BaseStepOperator(StackComponent, ABC):\n\n"""Base class for all ZenML step operators."""\n\n@abstractmethod\n\ndef launch(\n\nself,\n\ninfo: StepRunInfo,\n\nentrypoint_command: List[str],\n\n) -> None:\n\n"""Abstract method to execute a step.\n\nSubclasses must implement this method and launch a **synchronous**\n\njob that executes the `entrypoint_command`.\n\nArgs:\n\ninfo: Information about the step run.\n\nentrypoint_command: Command that executes the step.\n\n"""\n\nclass BaseStepOperatorFlavor(Flavor):\n\n"""Base class for all ZenML step operator flavors."""\n\n@property\n\n@abstractmethod\n\ndef name(self) -> str:\n\n"""Returns the name of the flavor."""\n\n@property\n\ndef type(self) -> StackComponentType:\n\n"""Returns the flavor type."""\n\nreturn StackComponentType.STEP_OPERATOR\n\n@property\n\ndef config_class(self) -> Type[BaseStepOperatorConfig]:\n\n"""Returns the config class for this flavor."""\n\nreturn BaseStepOperatorConfig\n\n@property\n\n@abstractmethod\n\ndef implementation_class(self) -> Type[BaseStepOperator]:',
'rray": [[1,2,3,4]] } }\'\n\nUsing a Service ConnectorTo set up the Seldon Core Model Deployer to authenticate to a remote Kubernetes cluster, it is recommended to leverage the many features provided by the Service Connectors such as auto-configuration, local client login, best security practices regarding long-lived credentials and fine-grained access control and reusing the same credentials across multiple stack components.\n\nDepending on where your target Kubernetes cluster is running, you can use one of the following Service Connectors:\n\nthe AWS Service Connector, if you are using an AWS EKS cluster.\n\nthe GCP Service Connector, if you are using a GKE cluster.\n\nthe Azure Service Connector, if you are using an AKS cluster.\n\nthe generic Kubernetes Service Connector for any other Kubernetes cluster.\n\nIf you don\'t already have a Service Connector configured in your ZenML deployment, you can register one using the interactive CLI command. You have the option to configure a Service Connector that can be used to access more than one Kubernetes cluster or even more than one type of cloud resource:\n\nzenml service-connector register -i\n\nA non-interactive CLI example that leverages the AWS CLI configuration on your local machine to auto-configure an AWS Service Connector targeting a single EKS cluster is:\n\nzenml service-connector register <CONNECTOR_NAME> --type aws --resource-type kubernetes-cluster --resource-name <EKS_CLUSTER_NAME> --auto-configure\n\nExample Command Output\n\n$ zenml service-connector register eks-zenhacks --type aws --resource-type kubernetes-cluster --resource-id zenhacks-cluster --auto-configure\n\n⠼ Registering service connector \'eks-zenhacks\'...\n\nSuccessfully registered service connector `eks-zenhacks` with access to the following resources:\n\n┏━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━┓\n\n┃ RESOURCE TYPE │ RESOURCE NAMES ┃\n\n┠───────────────────────┼──────────────────┨\n\n┃ 🌀 kubernetes-cluster │ zenhacks-cluster ┃\n\n┗━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━┛',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_384`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.2952 |
| cosine_accuracy@3 | 0.6386 |
| cosine_accuracy@5 | 0.7229 |
| cosine_accuracy@10 | 0.7892 |
| cosine_precision@1 | 0.2952 |
| cosine_precision@3 | 0.2129 |
| cosine_precision@5 | 0.1446 |
| cosine_precision@10 | 0.0789 |
| cosine_recall@1 | 0.2952 |
| cosine_recall@3 | 0.6386 |
| cosine_recall@5 | 0.7229 |
| cosine_recall@10 | 0.7892 |
| cosine_ndcg@10 | 0.5552 |
| cosine_mrr@10 | 0.4785 |
| **cosine_map@100** | **0.4871** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.3253 |
| cosine_accuracy@3 | 0.6145 |
| cosine_accuracy@5 | 0.6988 |
| cosine_accuracy@10 | 0.7892 |
| cosine_precision@1 | 0.3253 |
| cosine_precision@3 | 0.2048 |
| cosine_precision@5 | 0.1398 |
| cosine_precision@10 | 0.0789 |
| cosine_recall@1 | 0.3253 |
| cosine_recall@3 | 0.6145 |
| cosine_recall@5 | 0.6988 |
| cosine_recall@10 | 0.7892 |
| cosine_ndcg@10 | 0.5598 |
| cosine_mrr@10 | 0.486 |
| **cosine_map@100** | **0.4931** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.2711 |
| cosine_accuracy@3 | 0.5663 |
| cosine_accuracy@5 | 0.6386 |
| cosine_accuracy@10 | 0.7892 |
| cosine_precision@1 | 0.2711 |
| cosine_precision@3 | 0.1888 |
| cosine_precision@5 | 0.1277 |
| cosine_precision@10 | 0.0789 |
| cosine_recall@1 | 0.2711 |
| cosine_recall@3 | 0.5663 |
| cosine_recall@5 | 0.6386 |
| cosine_recall@10 | 0.7892 |
| cosine_ndcg@10 | 0.5243 |
| cosine_mrr@10 | 0.4404 |
| **cosine_map@100** | **0.4469** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.253 |
| cosine_accuracy@3 | 0.4759 |
| cosine_accuracy@5 | 0.5783 |
| cosine_accuracy@10 | 0.6627 |
| cosine_precision@1 | 0.253 |
| cosine_precision@3 | 0.1586 |
| cosine_precision@5 | 0.1157 |
| cosine_precision@10 | 0.0663 |
| cosine_recall@1 | 0.253 |
| cosine_recall@3 | 0.4759 |
| cosine_recall@5 | 0.5783 |
| cosine_recall@10 | 0.6627 |
| cosine_ndcg@10 | 0.454 |
| cosine_mrr@10 | 0.3875 |
| **cosine_map@100** | **0.3986** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 1,490 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 21.08 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 374.42 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| positive | anchor |
|:------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>How can I configure SSH keys for authentication in the HyperAI orchestrator using the ZenML framework?</code> | <code>authentication.<br><br>ED25519 key based authentication.SSH private keys configured in the connector will be distributed to all clients that use them to run pipelines with the HyperAI orchestrator. SSH keys are long-lived credentials that give unrestricted access to HyperAI instances.<br><br>When configuring the Service Connector, it is required to provide at least one hostname via hostnames and the username with which to login. Optionally, it is possible to provide an ssh_passphrase if applicable. This way, it is possible to use the HyperAI service connector in multiple ways:<br><br>Create one service connector per HyperAI instance with different SSH keys.<br><br>Configure a reused SSH key just once for multiple HyperAI instances, then select the individual instance when creating the HyperAI orchestrator component.<br><br>Auto-configuration<br><br>This Service Connector does not support auto-discovery and extraction of authentication credentials from HyperAI instances. If this feature is useful to you or your organization, please let us know by messaging us in Slack or creating an issue on GitHub.<br><br>Stack Components use<br><br>The HyperAI Service Connector can be used by the HyperAI Orchestrator to deploy pipeline runs to HyperAI instances.<br><br>PreviousAzure Service Connector<br><br>NextManage stacks<br><br>Last updated 19 days ago</code> |
| <code>What additional settings are required to enable CUDA for GPU-backed hardware when using the LocalDockerOrchestratorSettings?</code> | <code>or.local_docker": LocalDockerOrchestratorSettings(run_args={"cpu_count": 3}<br><br>@pipeline(settings=settings)<br><br>def simple_pipeline():<br><br>return_one()<br><br>Enabling CUDA for GPU-backed hardware<br><br>Note that if you wish to use this orchestrator to run steps on a GPU, you will need to follow the instructions on this page to ensure that it works. It requires adding some extra settings customization and is essential to enable CUDA for the GPU to give its full acceleration.<br><br>PreviousLocal Orchestrator<br><br>NextKubeflow Orchestrator<br><br>Last updated 15 days ago</code> |
| <code>What is the SECRET ID for the gcs-bucket resource type?</code> | <code>──────────┼──────────────────────────────────────┨┃ RESOURCE TYPES │ 📦 gcs-bucket ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ RESOURCE NAME │ <multiple> ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ SECRET ID │ 0d0a42bb-40a4-4f43-af9e-6342eeca3f28 ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ SESSION DURATION │ N/A ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ EXPIRES IN │ N/A ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ OWNER │ default ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ WORKSPACE │ default ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ SHARED │ ➖ ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ CREATED_AT │ 2023-05-19 08:15:48.056937 ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ UPDATED_AT │ 2023-05-19 08:15:48.056940 ┃<br><br>┗━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛<br><br>Configuration<br><br>┏━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━┓<br><br>┃ PROPERTY │ VALUE ┃<br><br>┠──────────────────────┼────────────┨<br><br>┃ project_id │ zenml-core ┃<br><br>┠──────────────────────┼────────────┨<br><br>┃ service_account_json │ [HIDDEN] ┃<br><br>┗━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━┛<br><br>GCP Service Account impersonation<br><br>Generates temporary STS credentials by impersonating another GCP service account.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: True
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 |
|:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.6667 | 1 | 0.3889 | 0.4114 | 0.4339 | 0.2694 |
| 1.9583 | 3 | 0.4463 | 0.4920 | 0.4852 | 0.3876 |
| **2.5833** | **4** | **0.4469** | **0.4931** | **0.4871** | **0.3986** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |