File size: 72,498 Bytes
87d67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb42ac1
 
87d67d4
cb42ac1
87d67d4
 
cb42ac1
 
87d67d4
 
cb42ac1
 
 
 
 
87d67d4
 
cb42ac1
 
 
 
 
 
 
 
 
87d67d4
 
cb42ac1
 
 
 
 
 
 
 
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
 
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
1782369
cb42ac1
1782369
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
 
1782369
 
cb42ac1
 
 
 
1782369
87d67d4
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
 
87d67d4
 
cb42ac1
 
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
 
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
 
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
 
 
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
1782369
 
cb42ac1
1782369
 
cb42ac1
 
1782369
 
cb42ac1
1782369
 
cb42ac1
1782369
 
cb42ac1
 
 
 
 
 
 
 
 
 
 
 
1782369
87d67d4
cb42ac1
 
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
 
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
1782369
cb42ac1
 
 
 
1782369
 
cb42ac1
 
 
1782369
 
cb42ac1
 
1782369
 
cb42ac1
 
 
 
1782369
 
cb42ac1
1782369
 
cb42ac1
1782369
 
cb42ac1
 
 
1782369
 
cb42ac1
 
87d67d4
 
cb42ac1
 
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
 
 
 
 
 
87d67d4
 
cb42ac1
 
87d67d4
 
cb42ac1
 
87d67d4
 
cb42ac1
 
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
 
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
1782369
 
cb42ac1
1782369
 
cb42ac1
1782369
 
cb42ac1
87d67d4
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
87d67d4
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0887ab
cb42ac1
87d67d4
1782369
cb42ac1
1782369
 
cb42ac1
1782369
540ab9d
cb42ac1
1782369
 
cb42ac1
1782369
 
cb42ac1
540ab9d
1782369
cb42ac1
1782369
 
cb42ac1
1782369
 
cb42ac1
 
1782369
 
cb42ac1
1782369
87d67d4
cb42ac1
87d67d4
1782369
cb42ac1
 
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
540ab9d
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
 
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
 
 
540ab9d
 
cb42ac1
 
540ab9d
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
 
87d67d4
 
cb42ac1
 
 
 
87d67d4
 
cb42ac1
 
87d67d4
 
cb42ac1
87d67d4
1782369
cb42ac1
87d67d4
 
cb42ac1
 
 
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
87d67d4
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
540ab9d
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
 
 
 
 
 
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
 
540ab9d
87d67d4
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
 
87d67d4
 
cb42ac1
87d67d4
540ab9d
cb42ac1
 
 
540ab9d
 
cb42ac1
 
 
 
 
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
 
540ab9d
 
cb42ac1
 
 
540ab9d
 
cb42ac1
 
 
 
 
 
 
 
87d67d4
 
cb42ac1
 
 
 
 
 
87d67d4
 
cb42ac1
 
 
 
 
 
 
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
 
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
 
87d67d4
 
cb42ac1
1782369
87d67d4
cb42ac1
87d67d4
 
cb42ac1
 
87d67d4
cb42ac1
 
 
 
 
87d67d4
 
cb42ac1
 
b0887ab
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
 
 
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
 
 
 
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
540ab9d
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
540ab9d
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
540ab9d
87d67d4
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
 
87d67d4
 
cb42ac1
 
1782369
 
cb42ac1
 
 
1782369
87d67d4
cb42ac1
 
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
 
 
1782369
 
cb42ac1
1782369
 
cb42ac1
 
 
1782369
 
cb42ac1
1782369
 
cb42ac1
 
 
 
 
1782369
 
cb42ac1
 
 
 
 
1782369
 
cb42ac1
 
 
1782369
 
cb42ac1
 
1782369
 
cb42ac1
 
 
 
 
1782369
 
cb42ac1
 
1782369
 
cb42ac1
1782369
 
cb42ac1
1782369
 
cb42ac1
1782369
540ab9d
cb42ac1
540ab9d
 
cb42ac1
 
 
 
540ab9d
 
cb42ac1
540ab9d
b0887ab
cb42ac1
 
 
b0887ab
 
cb42ac1
 
b0887ab
 
cb42ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0887ab
 
cb42ac1
b0887ab
cb42ac1
 
87d67d4
 
 
 
 
 
 
 
 
 
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
b0887ab
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
b0887ab
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
b0887ab
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
 
 
 
 
 
 
 
cb42ac1
87d67d4
 
b0887ab
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
b0887ab
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
 
 
 
 
 
 
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
 
 
 
 
 
 
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
cb42ac1
87d67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb42ac1
 
 
87d67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb42ac1
 
 
b0887ab
cb42ac1
 
 
b0887ab
cb42ac1
 
 
b0887ab
cb42ac1
 
 
87d67d4
 
 
 
 
1aace24
 
cb42ac1
b0887ab
cb42ac1
 
 
b0887ab
cb42ac1
 
 
b0887ab
cb42ac1
 
 
 
 
87d67d4
 
 
 
 
 
 
cb42ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d67d4
 
 
 
 
1782369
 
cb42ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
540ab9d
 
 
cb42ac1
87d67d4
cb42ac1
 
 
 
 
87d67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb42ac1
 
 
87d67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
---
base_model: Snowflake/snowflake-arctic-embed-m
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1490
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: How does ZenML facilitate connecting your deployment to various
    cloud providers and infrastructure services?
  sentences:
  - '🔌Connect services (AWS, GCP, Azure, K8s etc)


    Connect your ZenML deployment to a cloud provider and other infrastructure services
    and resources.


    A production-grade MLOps platform involves interactions between a diverse combination
    of third-party libraries and external services sourced from various different
    vendors. One of the most daunting hurdles in building and operating an MLOps platform
    composed of multiple components is configuring and maintaining uninterrupted and
    secured access to the infrastructure resources and services that it consumes.


    In layman''s terms, your pipeline code needs to "connect" to a handful of different
    services to run successfully and do what it''s designed to do. For example, it
    might need to connect to a private AWS S3 bucket to read and store artifacts,
    a Kubernetes cluster to execute steps with Kubeflow or Tekton, and a private GCR
    container registry to build and store container images. ZenML makes this possible
    by allowing you to configure authentication information and credentials embedded
    directly into your Stack Components, but this doesn''t scale well when you have
    more than a few Stack Components and has many other disadvantages related to usability
    and security.


    Gaining access to infrastructure resources and services requires knowledge about
    the different authentication and authorization mechanisms and involves configuring
    and maintaining valid credentials. It gets even more complicated when these different
    services need to access each other. For instance, the Kubernetes container running
    your pipeline step needs access to the S3 bucket to store artifacts or needs to
    access a cloud service like AWS SageMaker, VertexAI, or AzureML to run a CPU/GPU
    intensive task like training a model.'
  - '                                                 ┃┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨


    ┃ ID               │ e316bcb3-6659-467b-81e5-5ec25bfd36b0                                    ┃


    ┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨


    ┃ NAME             │ aws-sts-token                                                           ┃


    ┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨


    ┃ TYPE             │ 🔶 aws                                                                  ┃


    ┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨


    ┃ AUTH METHOD      │ sts-token                                                               ┃


    ┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨


    ┃ RESOURCE TYPES   │ 🔶 aws-generic, 📦 s3-bucket, 🌀 kubernetes-cluster, 🐳 docker-registry



    ┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨


    ┃ RESOURCE NAME    │ <multiple>                                                              ┃


    ┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨


    ┃ SECRET ID        │ 971318c9-8db9-4297-967d-80cda070a121                                    ┃


    ┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨


    ┃ SESSION DURATION │ N/A                                                                     ┃


    ┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨


    ┃ EXPIRES IN       │ 11h58m17s                                                               ┃


    ┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨


    ┃ OWNER            │ default                                                                 ┃'
  - 'io      ┃


    ┗━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛If you already have one or more Docker
    Service Connectors configured in your ZenML deployment, you can check which of
    them can be used to access the container registry you want to use for your Default
    Container Registry by running e.g.:


    zenml service-connector list-resources --connector-type docker --resource-id <REGISTRY_URI>


    Example Command Output


    $ zenml service-connector list-resources --connector-type docker --resource-id
    docker.io


    The  resource with name ''docker.io'' can be accessed by ''docker'' service connectors
    configured in your workspace:


    ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┓


    ┃             CONNECTOR ID             │ CONNECTOR NAME │ CONNECTOR TYPE │ RESOURCE
    TYPE      │ RESOURCE NAMES ┃


    ┠──────────────────────────────────────┼────────────────┼────────────────┼────────────────────┼────────────────┨


    ┃ cf55339f-dbc8-4ee6-862e-c25aff411292 │ dockerhub      │ 🐳 docker      │ 🐳 docker-registry
    │ docker.io      ┃


    ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛


    After having set up or decided on a Docker Service Connector to use to connect
    to the target container registry, you can register the Docker Container Registry
    as follows:


    # Register the container registry and reference the target registry URI


    zenml container-registry register <CONTAINER_REGISTRY_NAME> -f default \


    --uri=<REGISTRY_URL>


    # Connect the container registry to the target registry via a Docker Service Connector


    zenml container-registry connect <CONTAINER_REGISTRY_NAME> -i


    A non-interactive version that connects the Default Container Registry to a target
    registry through a Docker Service Connector:


    zenml container-registry connect <CONTAINER_REGISTRY_NAME> --connector <CONNECTOR_ID>


    Example Command Output


    $ zenml container-registry connect dockerhub --connector dockerhub'
- source_sentence: How can I configure the orchestrator settings for each cloud provider
    in ZenML?
  sentences:
  - 'kip scoping its Resource Type during registration.a multi-instance Service Connector
    instance can be configured once and used to gain access to multiple resources
    of the same type, each identifiable by a Resource Name. Not all types of connectors
    and not all types of resources support multiple instances. Some Service Connectors
    Types like the generic Kubernetes and Docker connector types only allow single-instance
    configurations: a Service Connector instance can only be used to access a single
    Kubernetes cluster and a single Docker registry. To configure a multi-instance
    Service Connector, you can simply skip scoping its Resource Name during registration.


    The following is an example of configuring a multi-type AWS Service Connector
    instance capable of accessing multiple AWS resources of different types:


    zenml service-connector register aws-multi-type --type aws --auto-configure


    Example Command Output


    ⠋ Registering service connector ''aws-multi-type''...


    Successfully registered service connector `aws-multi-type` with access to the
    following resources:


    ┏━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓


    ┃     RESOURCE TYPE     │ RESOURCE NAMES                               ┃


    ┠───────────────────────┼──────────────────────────────────────────────┨


    ┃    🔶 aws-generic     │ us-east-1                                    ┃


    ┠───────────────────────┼──────────────────────────────────────────────┨


    ┃     📦 s3-bucket      │ s3://aws-ia-mwaa-715803424590                ┃


    ┃                       │ s3://zenfiles                                ┃


    ┃                       │ s3://zenml-demos                             ┃


    ┃                       │ s3://zenml-generative-chat                   ┃


    ┃                       │ s3://zenml-public-datasets                   ┃


    ┃                       │ s3://zenml-public-swagger-spec               ┃


    ┠───────────────────────┼──────────────────────────────────────────────┨


    ┃ 🌀 kubernetes-cluster │ zenhacks-cluster                             ┃'
  - 'ister <STACK_NAME> -a <AZURE_STORE_NAME> ... --setWhen you register the Azure
    Artifact Store, you can create a ZenML Secret to store a variety of Azure credentials
    and then reference it in the Artifact Store configuration:


    to use an Azure storage account key , set account_name to your account name and
    one of account_key or sas_token to the Azure key or SAS token value as attributes
    in the ZenML secret


    to use an Azure storage account key connection string , configure the connection_string
    attribute in the ZenML secret to your Azure Storage Key connection string


    to use Azure Service Principal credentials , create an Azure Service Principal
    and then set account_name to your account name and client_id, client_secret and
    tenant_id to the client ID, secret and tenant ID of your service principal in
    the ZenML secret


    This method has some advantages over the implicit authentication method:


    you don''t need to install and configure the Azure CLI on your host


    you don''t need to care about enabling your other stack components (orchestrators,
    step operators and model deployers) to have access to the artifact store through
    Azure Managed Identities


    you can combine the Azure artifact store with other stack components that are
    not running in Azure


    Configuring Azure credentials in a ZenML secret and then referencing them in the
    Artifact Store configuration could look like this:


    # Store the Azure storage account key in a ZenML secret


    zenml secret create az_secret \


    --account_name=''<YOUR_AZURE_ACCOUNT_NAME>'' \


    --account_key=''<YOUR_AZURE_ACCOUNT_KEY>''


    # or if you want to use a connection string


    zenml secret create az_secret \


    --connection_string=''<YOUR_AZURE_CONNECTION_STRING>''


    # or if you want to use Azure ServicePrincipal credentials


    zenml secret create az_secret \


    --account_name=''<YOUR_AZURE_ACCOUNT_NAME>'' \


    --tenant_id=''<YOUR_AZURE_TENANT_ID>'' \


    --client_id=''<YOUR_AZURE_CLIENT_ID>'' \


    --client_secret=''<YOUR_AZURE_CLIENT_SECRET>'''
  - '. If not set, the cluster will not be autostopped.down: Tear down the cluster
    after all jobs finish (successfully or abnormally). If idle_minutes_to_autostop
    is also set, the cluster will be torn down after the specified idle time. Note
    that if errors occur during provisioning/data syncing/setting up, the cluster
    will not be torn down for debugging purposes.


    stream_logs: If True, show the logs in the terminal as they are generated while
    the cluster is running.


    docker_run_args: Additional arguments to pass to the docker run command. For example,
    [''--gpus=all''] to use all GPUs available on the VM.


    The following code snippets show how to configure the orchestrator settings for
    each cloud provider:


    Code Example:


    from zenml.integrations.skypilot_aws.flavors.skypilot_orchestrator_aws_vm_flavor
    import SkypilotAWSOrchestratorSettings


    skypilot_settings = SkypilotAWSOrchestratorSettings(


    cpus="2",


    memory="16",


    accelerators="V100:2",


    accelerator_args={"tpu_vm": True, "runtime_version": "tpu-vm-base"},


    use_spot=True,


    spot_recovery="recovery_strategy",


    region="us-west-1",


    zone="us-west1-a",


    image_id="ami-1234567890abcdef0",


    disk_size=100,


    disk_tier="high",


    cluster_name="my_cluster",


    retry_until_up=True,


    idle_minutes_to_autostop=60,


    down=True,


    stream_logs=True


    docker_run_args=["--gpus=all"]


    @pipeline(


    settings={


    "orchestrator.vm_aws": skypilot_settings


    Code Example:


    from zenml.integrations.skypilot_gcp.flavors.skypilot_orchestrator_gcp_vm_flavor
    import SkypilotGCPOrchestratorSettings


    skypilot_settings = SkypilotGCPOrchestratorSettings(


    cpus="2",


    memory="16",


    accelerators="V100:2",


    accelerator_args={"tpu_vm": True, "runtime_version": "tpu-vm-base"},


    use_spot=True,


    spot_recovery="recovery_strategy",


    region="us-west1",


    zone="us-west1-a",


    image_id="ubuntu-pro-2004-focal-v20231101",


    disk_size=100,


    disk_tier="high",


    cluster_name="my_cluster",


    retry_until_up=True,


    idle_minutes_to_autostop=60,


    down=True,


    stream_logs=True


    @pipeline(


    settings={


    "orchestrator.vm_gcp": skypilot_settings'
- source_sentence: What command do you use to create the resources after setting up
    the roleRef for a Kubernetes cluster?
  sentences:
  - 'pace: spark-namespace


    roleRef:


    kind: ClusterRolename: edit


    apiGroup: rbac.authorization.k8s.io


    ---


    And then execute the following command to create the resources:


    aws eks --region=$REGION update-kubeconfig --name=$EKS_CLUSTER_NAME


    kubectl create -f rbac.yaml


    Lastly, note down the namespace and the name of the service account since you
    will need them when registering the stack component in the next step.


    How to use it


    To use the KubernetesSparkStepOperator, you need:


    the ZenML spark integration. If you haven''t installed it already, runCopyzenml
    integration install spark


    Docker installed and running.


    A remote artifact store as part of your stack.


    A remote container registry as part of your stack.


    A Kubernetes cluster deployed.


    We can then register the step operator and use it in our active stack:


    zenml step-operator register spark_step_operator \


    --flavor=spark-kubernetes \


    --master=k8s://$EKS_API_SERVER_ENDPOINT \


    --namespace=<SPARK_KUBERNETES_NAMESPACE> \


    --service_account=<SPARK_KUBERNETES_SERVICE_ACCOUNT>


    # Register the stack


    zenml stack register spark_stack \


    o default \


    s spark_step_operator \


    a spark_artifact_store \


    c spark_container_registry \


    i local_builder \


    --set


    Once you added the step operator to your active stack, you can use it to execute
    individual steps of your pipeline by specifying it in the @step decorator as follows:


    from zenml import step


    @step(step_operator=<STEP_OPERATOR_NAME>)


    def step_on_spark(...) -> ...:


    """Some step that should run with Spark on Kubernetes."""


    ...


    After successfully running any step with a KubernetesSparkStepOperator, you should
    be able to see that a Spark driver pod was created in your cluster for each pipeline
    step when running kubectl get pods -n $KUBERNETES_NAMESPACE.


    Instead of hardcoding a step operator name, you can also use the Client to dynamically
    use the step operator of your active stack:


    from zenml.client import Client


    step_operator = Client().active_stack.step_operator


    @step(step_operator=step_operator.name)'
  - 'et_historical_features(entity_dict, features)


    ...Note that ZenML''s use of Pydantic to serialize and deserialize inputs stored
    in the ZenML metadata means that we are limited to basic data types. Pydantic
    cannot handle Pandas DataFrames, for example, or datetime values, so in the above
    code you can see that we have to convert them at various points.


    For more information and a full list of configurable attributes of the Feast feature
    store, check out the SDK Docs .


    PreviousFeature Stores


    NextDevelop a Custom Feature Store


    Last updated 8 days ago'
  - 'to get a quick global overview of our performance.# passing the results from
    all our previous evaluation steps


    @step(enable_cache=False)


    def visualize_evaluation_results(


    small_retrieval_eval_failure_rate: float,


    small_retrieval_eval_failure_rate_reranking: float,


    full_retrieval_eval_failure_rate: float,


    full_retrieval_eval_failure_rate_reranking: float,


    failure_rate_bad_answers: float,


    failure_rate_bad_immediate_responses: float,


    failure_rate_good_responses: float,


    average_toxicity_score: float,


    average_faithfulness_score: float,


    average_helpfulness_score: float,


    average_relevance_score: float,


    ) -> Optional[Image.Image]:


    """Visualizes the evaluation results."""


    step_context = get_step_context()


    pipeline_run_name = step_context.pipeline_run.name


    normalized_scores = [


    score / 20


    for score in [


    small_retrieval_eval_failure_rate,


    small_retrieval_eval_failure_rate_reranking,


    full_retrieval_eval_failure_rate,


    full_retrieval_eval_failure_rate_reranking,


    failure_rate_bad_answers,


    scores = normalized_scores + [


    failure_rate_bad_immediate_responses,


    failure_rate_good_responses,


    average_toxicity_score,


    average_faithfulness_score,


    average_helpfulness_score,


    average_relevance_score,


    labels = [


    "Small Retrieval Eval Failure Rate",


    "Small Retrieval Eval Failure Rate Reranking",


    "Full Retrieval Eval Failure Rate",


    "Full Retrieval Eval Failure Rate Reranking",


    "Failure Rate Bad Answers",


    "Failure Rate Bad Immediate Responses",


    "Failure Rate Good Responses",


    "Average Toxicity Score",


    "Average Faithfulness Score",


    "Average Helpfulness Score",


    "Average Relevance Score",


    # Create a new figure and axis


    fig, ax = plt.subplots(figsize=(10, 6))


    # Plot the horizontal bar chart


    y_pos = np.arange(len(labels))


    ax.barh(y_pos, scores, align="center")


    ax.set_yticks(y_pos)


    ax.set_yticklabels(labels)


    ax.invert_yaxis()  # Labels read top-to-bottom


    ax.set_xlabel("Score")


    ax.set_xlim(0, 5)


    ax.set_title(f"Evaluation Metrics for {pipeline_run_name}")


    # Adjust the layout


    plt.tight_layout()'
- source_sentence: What is the command to register and connect a Vertex AI Orchestrator
    Stack Component to the target GCP project using ZenML?
  sentences:
  - 'ggingFaceModelDeployer.get_active_model_deployer()# fetch existing services with
    same pipeline name, step name and model name


    existing_services = model_deployer.find_model_server(


    pipeline_name=pipeline_name,


    pipeline_step_name=pipeline_step_name,


    model_name=model_name,


    running=running,


    if not existing_services:


    raise RuntimeError(


    f"No Hugging Face inference endpoint deployed by step "


    f"''{pipeline_step_name}'' in pipeline ''{pipeline_name}'' with name "


    f"''{model_name}'' is currently running."


    return existing_services[0]


    # Use the service for inference


    @step


    def predictor(


    service: HuggingFaceDeploymentService,


    data: str


    ) -> Annotated[str, "predictions"]:


    """Run a inference request against a prediction service"""


    prediction = service.predict(data)


    return prediction


    @pipeline


    def huggingface_deployment_inference_pipeline(


    pipeline_name: str, pipeline_step_name: str = "huggingface_model_deployer_step",


    ):


    inference_data = ...


    model_deployment_service = prediction_service_loader(


    pipeline_name=pipeline_name,


    pipeline_step_name=pipeline_step_name,


    predictions = predictor(model_deployment_service, inference_data)


    For more information and a full list of configurable attributes of the Hugging
    Face Model Deployer, check out the SDK Docs.


    PreviousBentoML


    NextDevelop a Custom Model Deployer


    Last updated 15 days ago'
  - 'Set up CI/CD


    Managing the lifecycle of a ZenML pipeline with Continuous Integration and Delivery


    Until now, we have been executing ZenML pipelines locally. While this is a good
    mode of operating pipelines, in production it is often desirable to mediate runs
    through a central workflow engine baked into your CI.


    This allows data scientists to experiment with data processing and model training
    locally and then have code changes automatically tested and validated through
    the standard pull request/merge request peer review process. Changes that pass
    the CI and code-review are then deployed automatically to production. Here is
    how this could look like:


    Breaking it down


    To illustrate this, let''s walk through how this process might be set up on a
    GitHub Repository.


    A data scientist wants to make improvements to the ML pipeline. They clone the
    repository, create a new branch, and experiment with new models or data processing
    steps on their local machine.


    Once the data scientist thinks they have improved the pipeline, they create a
    pull request for their branch on GitHub. This automatically triggers a GitHub
    Action that will run the same pipeline in the staging environment (e.g. a pipeline
    running on a cloud stack in GCP), potentially with different test data. As long
    as the pipeline does not run successfully in the staging environment, the PR cannot
    be merged. The pipeline also generates a set of metrics and test results that
    are automatically published to the PR, where they can be peer-reviewed to decide
    if the changes should be merged.


    Once the PR has been reviewed and passes all checks, the branch is merged into
    main. This automatically triggers another GitHub Action that now runs a pipeline
    in the production environment, which trains the same model on production data,
    runs some checks to compare its performance with the model currently served in
    production and then, if all checks pass, automatically deploys the new model.'
  - '━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛


    ```register and connect a Vertex AI Orchestrator Stack Component to the target
    GCP projectNOTE: If we do not specify a workload service account, the Vertex AI
    Pipelines Orchestrator uses the Compute Engine default service account in the
    target project to run pipelines. You must grant this account the Vertex AI Service
    Agent role, otherwise the pipelines will fail. More information on other configurations
    possible for the Vertex AI Orchestrator can be found here.Copyzenml orchestrator
    register vertex-ai-zenml-core --flavor=vertex --location=europe-west1 --synchronous=true


    Example Command Output


    ```text


    Running with active workspace: ''default'' (repository)


    Running with active stack: ''default'' (repository)


    Successfully registered orchestrator `vertex-ai-zenml-core`.


    ```


    ```sh


    zenml orchestrator connect vertex-ai-zenml-core --connector vertex-ai-zenml-core


    ```


    Example Command Output


    ```text


    Running with active workspace: ''default'' (repository)


    Running with active stack: ''default'' (repository)


    Successfully connected orchestrator `vertex-ai-zenml-core` to the following resources:


    ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┓


    ┃             CONNECTOR ID             │ CONNECTOR NAME       │ CONNECTOR TYPE
    │ RESOURCE TYPE  │ RESOURCE NAMES ┃


    ┠──────────────────────────────────────┼──────────────────────┼────────────────┼────────────────┼────────────────┨


    ┃ f97671b9-8c73-412b-bf5e-4b7c48596f5f │ vertex-ai-zenml-core │ 🔵 gcp         │
    🔵 gcp-generic │ zenml-core     ┃


    ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛


    ```


    Register and connect a GCP Container Registry Stack Component to a GCR container
    registry:Copyzenml container-registry register gcr-zenml-core --flavor gcp --uri=gcr.io/zenml-core


    Example Command Output


    ```text


    Running with active workspace: ''default'' (repository)'
- source_sentence: How can I develop a custom step operator in ZenML?
  sentences:
  - 'Develop a Custom Step Operator


    Learning how to develop a custom step operator.


    Before diving into the specifics of this component type, it is beneficial to familiarize
    yourself with our general guide to writing custom component flavors in ZenML.
    This guide provides an essential understanding of ZenML''s component flavor concepts.


    Base Abstraction


    The BaseStepOperator is the abstract base class that needs to be subclassed in
    order to run specific steps of your pipeline in a separate environment. As step
    operators can come in many shapes and forms, the base class exposes a deliberately
    basic and generic interface:


    from abc import ABC, abstractmethod


    from typing import List, Type


    from zenml.enums import StackComponentType


    from zenml.stack import StackComponent, StackComponentConfig, Flavor


    from zenml.config.step_run_info import StepRunInfo


    class BaseStepOperatorConfig(StackComponentConfig):


    """Base config for step operators."""


    class BaseStepOperator(StackComponent, ABC):


    """Base class for all ZenML step operators."""


    @abstractmethod


    def launch(


    self,


    info: StepRunInfo,


    entrypoint_command: List[str],


    ) -> None:


    """Abstract method to execute a step.


    Subclasses must implement this method and launch a **synchronous**


    job that executes the `entrypoint_command`.


    Args:


    info: Information about the step run.


    entrypoint_command: Command that executes the step.


    """


    class BaseStepOperatorFlavor(Flavor):


    """Base class for all ZenML step operator flavors."""


    @property


    @abstractmethod


    def name(self) -> str:


    """Returns the name of the flavor."""


    @property


    def type(self) -> StackComponentType:


    """Returns the flavor type."""


    return StackComponentType.STEP_OPERATOR


    @property


    def config_class(self) -> Type[BaseStepOperatorConfig]:


    """Returns the config class for this flavor."""


    return BaseStepOperatorConfig


    @property


    @abstractmethod


    def implementation_class(self) -> Type[BaseStepOperator]:'
  - '-grade deployments.


    Installing the mlstacks extraTo install mlstacks, either run pip install mlstacks
    or pip install "zenml[mlstacks]" to install it along with ZenML.


    MLStacks uses Terraform on the backend to manage infrastructure. You will need
    to have Terraform installed. Please visit the Terraform docs for installation
    instructions.


    MLStacks also uses Helm to deploy Kubernetes resources. You will need to have
    Helm installed. Please visit the Helm docs for installation instructions.


    Deploying a stack component


    The ZenML CLI allows you to deploy individual stack components using the deploy
    subcommand which is implemented for all supported stack components. You can find
    the list of supported stack components here.


    Deploying a stack


    For deploying a full stack, use the zenml stack deploy command. See the stack
    deployment page for more details of which cloud providers and stack components
    are supported.


    How does mlstacks work?


    MLStacks is built around the concept of a stack specification. A stack specification
    is a YAML file that describes the stack and includes references to component specification
    files. A component specification is a YAML file that describes a component. (Currently
    all deployments of components (in various combinations) must be defined within
    the context of a stack.)


    ZenML handles the creation of stack specifications for you when you run one of
    the deploy subcommands using the CLI. A valid specification is generated and used
    by mlstacks to deploy your stack using Terraform. The Terraform definitions and
    state are stored in your global configuration directory along with any state files
    generated while deploying your stack.


    Your configuration directory could be in a number of different places depending
    on your operating system, but read more about it in the Click docs to see which
    location applies to your situation.


    Deploy stack components individuallyIndividually deploying different stack components.'
  - 'rray": [[1,2,3,4]] } }''


    Using a Service ConnectorTo set up the Seldon Core Model Deployer to authenticate
    to a remote Kubernetes cluster, it is recommended to leverage the many features
    provided by the Service Connectors such as auto-configuration, local client login,
    best security practices regarding long-lived credentials and fine-grained access
    control and reusing the same credentials across multiple stack components.


    Depending on where your target Kubernetes cluster is running, you can use one
    of the following Service Connectors:


    the AWS Service Connector, if you are using an AWS EKS cluster.


    the GCP Service Connector, if you are using a GKE cluster.


    the Azure Service Connector, if you are using an AKS cluster.


    the generic Kubernetes Service Connector for any other Kubernetes cluster.


    If you don''t already have a Service Connector configured in your ZenML deployment,
    you can register one using the interactive CLI command. You have the option to
    configure a Service Connector that can be used to access more than one Kubernetes
    cluster or even more than one type of cloud resource:


    zenml service-connector register -i


    A non-interactive CLI example that leverages the AWS CLI configuration on your
    local machine to auto-configure an AWS Service Connector targeting a single EKS
    cluster is:


    zenml service-connector register <CONNECTOR_NAME> --type aws --resource-type kubernetes-cluster
    --resource-name <EKS_CLUSTER_NAME> --auto-configure


    Example Command Output


    $ zenml service-connector register eks-zenhacks --type aws --resource-type kubernetes-cluster
    --resource-id zenhacks-cluster --auto-configure


    ⠼ Registering service connector ''eks-zenhacks''...


    Successfully registered service connector `eks-zenhacks` with access to the following
    resources:


    ┏━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━┓


    ┃     RESOURCE TYPE     │ RESOURCE NAMES   ┃


    ┠───────────────────────┼──────────────────┨


    ┃ 🌀 kubernetes-cluster │ zenhacks-cluster ┃


    ┗━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━┛'
model-index:
- name: zenml/finetuned-snowflake-arctic-embed-m
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 384
      type: dim_384
    metrics:
    - type: cosine_accuracy@1
      value: 0.29518072289156627
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6385542168674698
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7228915662650602
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7891566265060241
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.29518072289156627
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.21285140562248994
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14457831325301201
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0789156626506024
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.29518072289156627
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6385542168674698
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7228915662650602
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7891566265060241
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5552191347520903
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.47847819850831885
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.48706201897841145
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.3253012048192771
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6144578313253012
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6987951807228916
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7891566265060241
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.3253012048192771
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2048192771084337
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1397590361445783
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0789156626506024
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3253012048192771
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6144578313253012
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6987951807228916
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7891566265060241
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5597682297824715
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4859987569324918
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4930658557873217
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.2710843373493976
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5662650602409639
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6385542168674698
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7891566265060241
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.2710843373493976
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.18875502008032125
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.12771084337349395
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0789156626506024
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.2710843373493976
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5662650602409639
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6385542168674698
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7891566265060241
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5242689178594545
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4403614457831327
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4468744710389297
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.25301204819277107
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.4759036144578313
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5783132530120482
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6626506024096386
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.25301204819277107
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.15863453815261042
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.11566265060240961
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.06626506024096386
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.25301204819277107
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.4759036144578313
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5783132530120482
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6626506024096386
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.45397796379806826
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.38746175176898084
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.39859357699776915
      name: Cosine Map@100
---

# zenml/finetuned-snowflake-arctic-embed-m

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision 71bc94c8f9ea1e54fba11167004205a65e5da2cc -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("zenml/finetuned-snowflake-arctic-embed-m")
# Run inference
sentences = [
    'How can I develop a custom step operator in ZenML?',
    'Develop a Custom Step Operator\n\nLearning how to develop a custom step operator.\n\nBefore diving into the specifics of this component type, it is beneficial to familiarize yourself with our general guide to writing custom component flavors in ZenML. This guide provides an essential understanding of ZenML\'s component flavor concepts.\n\nBase Abstraction\n\nThe BaseStepOperator is the abstract base class that needs to be subclassed in order to run specific steps of your pipeline in a separate environment. As step operators can come in many shapes and forms, the base class exposes a deliberately basic and generic interface:\n\nfrom abc import ABC, abstractmethod\n\nfrom typing import List, Type\n\nfrom zenml.enums import StackComponentType\n\nfrom zenml.stack import StackComponent, StackComponentConfig, Flavor\n\nfrom zenml.config.step_run_info import StepRunInfo\n\nclass BaseStepOperatorConfig(StackComponentConfig):\n\n"""Base config for step operators."""\n\nclass BaseStepOperator(StackComponent, ABC):\n\n"""Base class for all ZenML step operators."""\n\n@abstractmethod\n\ndef launch(\n\nself,\n\ninfo: StepRunInfo,\n\nentrypoint_command: List[str],\n\n) -> None:\n\n"""Abstract method to execute a step.\n\nSubclasses must implement this method and launch a **synchronous**\n\njob that executes the `entrypoint_command`.\n\nArgs:\n\ninfo: Information about the step run.\n\nentrypoint_command: Command that executes the step.\n\n"""\n\nclass BaseStepOperatorFlavor(Flavor):\n\n"""Base class for all ZenML step operator flavors."""\n\n@property\n\n@abstractmethod\n\ndef name(self) -> str:\n\n"""Returns the name of the flavor."""\n\n@property\n\ndef type(self) -> StackComponentType:\n\n"""Returns the flavor type."""\n\nreturn StackComponentType.STEP_OPERATOR\n\n@property\n\ndef config_class(self) -> Type[BaseStepOperatorConfig]:\n\n"""Returns the config class for this flavor."""\n\nreturn BaseStepOperatorConfig\n\n@property\n\n@abstractmethod\n\ndef implementation_class(self) -> Type[BaseStepOperator]:',
    'rray": [[1,2,3,4]] } }\'\n\nUsing a Service ConnectorTo set up the Seldon Core Model Deployer to authenticate to a remote Kubernetes cluster, it is recommended to leverage the many features provided by the Service Connectors such as auto-configuration, local client login, best security practices regarding long-lived credentials and fine-grained access control and reusing the same credentials across multiple stack components.\n\nDepending on where your target Kubernetes cluster is running, you can use one of the following Service Connectors:\n\nthe AWS Service Connector, if you are using an AWS EKS cluster.\n\nthe GCP Service Connector, if you are using a GKE cluster.\n\nthe Azure Service Connector, if you are using an AKS cluster.\n\nthe generic Kubernetes Service Connector for any other Kubernetes cluster.\n\nIf you don\'t already have a Service Connector configured in your ZenML deployment, you can register one using the interactive CLI command. You have the option to configure a Service Connector that can be used to access more than one Kubernetes cluster or even more than one type of cloud resource:\n\nzenml service-connector register -i\n\nA non-interactive CLI example that leverages the AWS CLI configuration on your local machine to auto-configure an AWS Service Connector targeting a single EKS cluster is:\n\nzenml service-connector register <CONNECTOR_NAME> --type aws --resource-type kubernetes-cluster --resource-name <EKS_CLUSTER_NAME> --auto-configure\n\nExample Command Output\n\n$ zenml service-connector register eks-zenhacks --type aws --resource-type kubernetes-cluster --resource-id zenhacks-cluster --auto-configure\n\n⠼ Registering service connector \'eks-zenhacks\'...\n\nSuccessfully registered service connector `eks-zenhacks` with access to the following resources:\n\n┏━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━┓\n\n┃     RESOURCE TYPE     │ RESOURCE NAMES   ┃\n\n┠───────────────────────┼──────────────────┨\n\n┃ 🌀 kubernetes-cluster │ zenhacks-cluster ┃\n\n┗━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━┛',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_384`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.2952     |
| cosine_accuracy@3   | 0.6386     |
| cosine_accuracy@5   | 0.7229     |
| cosine_accuracy@10  | 0.7892     |
| cosine_precision@1  | 0.2952     |
| cosine_precision@3  | 0.2129     |
| cosine_precision@5  | 0.1446     |
| cosine_precision@10 | 0.0789     |
| cosine_recall@1     | 0.2952     |
| cosine_recall@3     | 0.6386     |
| cosine_recall@5     | 0.7229     |
| cosine_recall@10    | 0.7892     |
| cosine_ndcg@10      | 0.5552     |
| cosine_mrr@10       | 0.4785     |
| **cosine_map@100**  | **0.4871** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.3253     |
| cosine_accuracy@3   | 0.6145     |
| cosine_accuracy@5   | 0.6988     |
| cosine_accuracy@10  | 0.7892     |
| cosine_precision@1  | 0.3253     |
| cosine_precision@3  | 0.2048     |
| cosine_precision@5  | 0.1398     |
| cosine_precision@10 | 0.0789     |
| cosine_recall@1     | 0.3253     |
| cosine_recall@3     | 0.6145     |
| cosine_recall@5     | 0.6988     |
| cosine_recall@10    | 0.7892     |
| cosine_ndcg@10      | 0.5598     |
| cosine_mrr@10       | 0.486      |
| **cosine_map@100**  | **0.4931** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.2711     |
| cosine_accuracy@3   | 0.5663     |
| cosine_accuracy@5   | 0.6386     |
| cosine_accuracy@10  | 0.7892     |
| cosine_precision@1  | 0.2711     |
| cosine_precision@3  | 0.1888     |
| cosine_precision@5  | 0.1277     |
| cosine_precision@10 | 0.0789     |
| cosine_recall@1     | 0.2711     |
| cosine_recall@3     | 0.5663     |
| cosine_recall@5     | 0.6386     |
| cosine_recall@10    | 0.7892     |
| cosine_ndcg@10      | 0.5243     |
| cosine_mrr@10       | 0.4404     |
| **cosine_map@100**  | **0.4469** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.253      |
| cosine_accuracy@3   | 0.4759     |
| cosine_accuracy@5   | 0.5783     |
| cosine_accuracy@10  | 0.6627     |
| cosine_precision@1  | 0.253      |
| cosine_precision@3  | 0.1586     |
| cosine_precision@5  | 0.1157     |
| cosine_precision@10 | 0.0663     |
| cosine_recall@1     | 0.253      |
| cosine_recall@3     | 0.4759     |
| cosine_recall@5     | 0.5783     |
| cosine_recall@10    | 0.6627     |
| cosine_ndcg@10      | 0.454      |
| cosine_mrr@10       | 0.3875     |
| **cosine_map@100**  | **0.3986** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 1,490 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                          | anchor                                                                               |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 9 tokens</li><li>mean: 21.08 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 374.42 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                  | anchor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
  |:------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>How can I configure SSH keys for authentication in the HyperAI orchestrator using the ZenML framework?</code>                       | <code>authentication.<br><br>ED25519 key based authentication.SSH private keys configured in the connector will be distributed to all clients that use them to run pipelines with the HyperAI orchestrator. SSH keys are long-lived credentials that give unrestricted access to HyperAI instances.<br><br>When configuring the Service Connector, it is required to provide at least one hostname via hostnames and the username with which to login. Optionally, it is possible to provide an ssh_passphrase if applicable. This way, it is possible to use the HyperAI service connector in multiple ways:<br><br>Create one service connector per HyperAI instance with different SSH keys.<br><br>Configure a reused SSH key just once for multiple HyperAI instances, then select the individual instance when creating the HyperAI orchestrator component.<br><br>Auto-configuration<br><br>This Service Connector does not support auto-discovery and extraction of authentication credentials from HyperAI instances. If this feature is useful to you or your organization, please let us know by messaging us in Slack or creating an issue on GitHub.<br><br>Stack Components use<br><br>The HyperAI Service Connector can be used by the HyperAI Orchestrator to deploy pipeline runs to HyperAI instances.<br><br>PreviousAzure Service Connector<br><br>NextManage stacks<br><br>Last updated 19 days ago</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
  | <code>What additional settings are required to enable CUDA for GPU-backed hardware when using the LocalDockerOrchestratorSettings?</code> | <code>or.local_docker": LocalDockerOrchestratorSettings(run_args={"cpu_count": 3}<br><br>@pipeline(settings=settings)<br><br>def simple_pipeline():<br><br>return_one()<br><br>Enabling CUDA for GPU-backed hardware<br><br>Note that if you wish to use this orchestrator to run steps on a GPU, you will need to follow the instructions on this page to ensure that it works. It requires adding some extra settings customization and is essential to enable CUDA for the GPU to give its full acceleration.<br><br>PreviousLocal Orchestrator<br><br>NextKubeflow Orchestrator<br><br>Last updated 15 days ago</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
  | <code>What is the SECRET ID for the gcs-bucket resource type?</code>                                                                      | <code>──────────┼──────────────────────────────────────┨┃ RESOURCE TYPES   │ 📦 gcs-bucket                        ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ RESOURCE NAME    │ <multiple><br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ SECRET ID        │ 0d0a42bb-40a4-4f43-af9e-6342eeca3f28 ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ SESSION DURATION │ N/A                                  ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ EXPIRES IN       │ N/A                                  ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ OWNER            │ default                              ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ WORKSPACE        │ default                              ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ SHARED           │ ➖                                   ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ CREATED_AT       │ 2023-05-19 08:15:48.056937           ┃<br><br>┠──────────────────┼──────────────────────────────────────┨<br><br>┃ UPDATED_AT       │ 2023-05-19 08:15:48.056940           ┃<br><br>┗━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛<br><br>Configuration<br><br>┏━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━┓<br><br>┃ PROPERTY             │ VALUE      ┃<br><br>┠──────────────────────┼────────────┨<br><br>┃ project_id           │ zenml-core ┃<br><br>┠──────────────────────┼────────────┨<br><br>┃ service_account_json │ [HIDDEN]   ┃<br><br>┗━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━┛<br><br>GCP Service Account impersonation<br><br>Generates temporary STS credentials by impersonating another GCP service account.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          384,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: True
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step  | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 |
|:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.6667     | 1     | 0.3889                 | 0.4114                 | 0.4339                 | 0.2694                |
| 1.9583     | 3     | 0.4463                 | 0.4920                 | 0.4852                 | 0.3876                |
| **2.5833** | **4** | **0.4469**             | **0.4931**             | **0.4871**             | **0.3986**            |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->