yunaseo's picture
yunase/DistilBertModel_emotion_detection
ad0996e verified
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: emotions_distilbert_im
    results: []

emotions_distilbert_im

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5190
  • F1 Micro: 0.6929
  • F1 Macro: 0.5934
  • Accuracy: 0.2362

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Micro F1 Macro Accuracy
0.7627 0.41 20 0.6619 0.5987 0.3531 0.1599
0.6258 0.82 40 0.5710 0.6609 0.4929 0.1929
0.5609 1.22 60 0.5496 0.6672 0.5097 0.2233
0.504 1.63 80 0.5260 0.6765 0.5840 0.1948
0.4856 2.04 100 0.5152 0.6864 0.5912 0.1981
0.4246 2.45 120 0.5190 0.6929 0.5934 0.2362
0.4157 2.86 140 0.5321 0.6757 0.5763 0.2058
0.4027 3.27 160 0.5186 0.6800 0.5914 0.2149
0.346 3.67 180 0.5274 0.6725 0.5888 0.1981
0.3562 4.08 200 0.5346 0.6811 0.5884 0.2272
0.3097 4.49 220 0.5413 0.6767 0.5863 0.2136
0.2989 4.9 240 0.5637 0.6832 0.5886 0.2259
0.2701 5.31 260 0.5745 0.6803 0.5911 0.2272
0.2505 5.71 280 0.5946 0.6783 0.5807 0.2155
0.2508 6.12 300 0.6194 0.6822 0.5764 0.2272
0.2171 6.53 320 0.6293 0.6800 0.5790 0.2181
0.2164 6.94 340 0.6322 0.6805 0.5806 0.2097
0.1949 7.35 360 0.6663 0.6775 0.5709 0.2155
0.1852 7.76 380 0.6763 0.6768 0.5749 0.2129
0.1821 8.16 400 0.6757 0.6791 0.5743 0.2227
0.1653 8.57 420 0.6862 0.6757 0.5728 0.2155
0.166 8.98 440 0.6989 0.6786 0.5749 0.2233
0.1593 9.39 460 0.7019 0.6784 0.5765 0.2220
0.1512 9.8 480 0.7010 0.6781 0.5744 0.2233

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2