--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: emotions_distilbert_im results: [] --- # emotions_distilbert_im This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5190 - F1 Micro: 0.6929 - F1 Macro: 0.5934 - Accuracy: 0.2362 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:| | 0.7627 | 0.41 | 20 | 0.6619 | 0.5987 | 0.3531 | 0.1599 | | 0.6258 | 0.82 | 40 | 0.5710 | 0.6609 | 0.4929 | 0.1929 | | 0.5609 | 1.22 | 60 | 0.5496 | 0.6672 | 0.5097 | 0.2233 | | 0.504 | 1.63 | 80 | 0.5260 | 0.6765 | 0.5840 | 0.1948 | | 0.4856 | 2.04 | 100 | 0.5152 | 0.6864 | 0.5912 | 0.1981 | | 0.4246 | 2.45 | 120 | 0.5190 | 0.6929 | 0.5934 | 0.2362 | | 0.4157 | 2.86 | 140 | 0.5321 | 0.6757 | 0.5763 | 0.2058 | | 0.4027 | 3.27 | 160 | 0.5186 | 0.6800 | 0.5914 | 0.2149 | | 0.346 | 3.67 | 180 | 0.5274 | 0.6725 | 0.5888 | 0.1981 | | 0.3562 | 4.08 | 200 | 0.5346 | 0.6811 | 0.5884 | 0.2272 | | 0.3097 | 4.49 | 220 | 0.5413 | 0.6767 | 0.5863 | 0.2136 | | 0.2989 | 4.9 | 240 | 0.5637 | 0.6832 | 0.5886 | 0.2259 | | 0.2701 | 5.31 | 260 | 0.5745 | 0.6803 | 0.5911 | 0.2272 | | 0.2505 | 5.71 | 280 | 0.5946 | 0.6783 | 0.5807 | 0.2155 | | 0.2508 | 6.12 | 300 | 0.6194 | 0.6822 | 0.5764 | 0.2272 | | 0.2171 | 6.53 | 320 | 0.6293 | 0.6800 | 0.5790 | 0.2181 | | 0.2164 | 6.94 | 340 | 0.6322 | 0.6805 | 0.5806 | 0.2097 | | 0.1949 | 7.35 | 360 | 0.6663 | 0.6775 | 0.5709 | 0.2155 | | 0.1852 | 7.76 | 380 | 0.6763 | 0.6768 | 0.5749 | 0.2129 | | 0.1821 | 8.16 | 400 | 0.6757 | 0.6791 | 0.5743 | 0.2227 | | 0.1653 | 8.57 | 420 | 0.6862 | 0.6757 | 0.5728 | 0.2155 | | 0.166 | 8.98 | 440 | 0.6989 | 0.6786 | 0.5749 | 0.2233 | | 0.1593 | 9.39 | 460 | 0.7019 | 0.6784 | 0.5765 | 0.2220 | | 0.1512 | 9.8 | 480 | 0.7010 | 0.6781 | 0.5744 | 0.2233 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2