yonigo's picture
Model save
bda96d1 verified
|
raw
history blame
4.66 kB
metadata
license: apache-2.0
base_model: distilbert-base-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert-base-cased-pii-en
    results: []

distilbert-base-cased-pii-en

This model is a fine-tuned version of distilbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0412
  • Bod F1: 0.9572
  • Building F1: 0.9765
  • Cardissuer F1: 0.0
  • City F1: 0.9467
  • Country F1: 0.9664
  • Date F1: 0.9008
  • Driverlicense F1: 0.9304
  • Email F1: 0.9844
  • Geocoord F1: 0.9655
  • Givenname1 F1: 0.8097
  • Givenname2 F1: 0.5922
  • Idcard F1: 0.9202
  • Ip F1: 0.9807
  • Lastname1 F1: 0.7518
  • Lastname2 F1: 0.4932
  • Lastname3 F1: 0.0948
  • Pass F1: 0.8835
  • Passport F1: 0.9392
  • Postcode F1: 0.9766
  • Secaddress F1: 0.9749
  • Sex F1: 0.9687
  • Socialnumber F1: 0.9334
  • State F1: 0.9744
  • Street F1: 0.9534
  • Tel F1: 0.9553
  • Time F1: 0.9619
  • Title F1: 0.9502
  • Username F1: 0.9495
  • Precision: 0.9163
  • Recall: 0.9342
  • F1: 0.9252
  • Accuracy: 0.9903

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.2
  • lr_scheduler_warmup_steps: 3000
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Bod F1 Building F1 Cardissuer F1 City F1 Country F1 Date F1 Driverlicense F1 Email F1 Geocoord F1 Givenname1 F1 Givenname2 F1 Idcard F1 Ip F1 Lastname1 F1 Lastname2 F1 Lastname3 F1 Pass F1 Passport F1 Postcode F1 Secaddress F1 Sex F1 Socialnumber F1 State F1 Street F1 Tel F1 Time F1 Title F1 Username F1 Precision Recall F1 Accuracy
0.2231 2.1368 1000 0.1075 0.8895 0.9243 0.0 0.6385 0.8816 0.7987 0.6178 0.9512 0.6982 0.4720 0.0 0.5863 0.9082 0.5397 0.0 0.0 0.6402 0.6167 0.7858 0.6568 0.8626 0.7003 0.8859 0.6843 0.8146 0.9158 0.7302 0.8258 0.7239 0.7677 0.7452 0.9739
0.069 4.2735 2000 0.0540 0.9478 0.9698 0.0 0.9055 0.9433 0.8854 0.8801 0.9783 0.9676 0.7201 0.2896 0.8815 0.9731 0.6380 0.1939 0.0 0.8266 0.8883 0.9592 0.9645 0.9370 0.8931 0.9390 0.9237 0.9386 0.9455 0.9087 0.9195 0.8707 0.9044 0.8872 0.9865
0.0447 6.4103 3000 0.0455 0.9537 0.9756 0.0 0.9327 0.9593 0.9007 0.9030 0.9792 0.9633 0.7860 0.4337 0.9056 0.9747 0.7205 0.3587 0.0 0.8557 0.9144 0.9712 0.9732 0.9661 0.9204 0.9689 0.9426 0.9552 0.9588 0.9374 0.9413 0.9011 0.9232 0.9120 0.9887
0.0293 8.5470 4000 0.0412 0.9572 0.9765 0.0 0.9467 0.9664 0.9008 0.9304 0.9844 0.9655 0.8097 0.5922 0.9202 0.9807 0.7518 0.4932 0.0948 0.8835 0.9392 0.9766 0.9749 0.9687 0.9334 0.9744 0.9534 0.9553 0.9619 0.9502 0.9495 0.9163 0.9342 0.9252 0.9903

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1