yonigo commited on
Commit
bda96d1
·
verified ·
1 Parent(s): 381c1e8

Model save

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert-base-cased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: distilbert-base-cased-pii-en
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # distilbert-base-cased-pii-en
20
+
21
+ This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.0412
24
+ - Bod F1: 0.9572
25
+ - Building F1: 0.9765
26
+ - Cardissuer F1: 0.0
27
+ - City F1: 0.9467
28
+ - Country F1: 0.9664
29
+ - Date F1: 0.9008
30
+ - Driverlicense F1: 0.9304
31
+ - Email F1: 0.9844
32
+ - Geocoord F1: 0.9655
33
+ - Givenname1 F1: 0.8097
34
+ - Givenname2 F1: 0.5922
35
+ - Idcard F1: 0.9202
36
+ - Ip F1: 0.9807
37
+ - Lastname1 F1: 0.7518
38
+ - Lastname2 F1: 0.4932
39
+ - Lastname3 F1: 0.0948
40
+ - Pass F1: 0.8835
41
+ - Passport F1: 0.9392
42
+ - Postcode F1: 0.9766
43
+ - Secaddress F1: 0.9749
44
+ - Sex F1: 0.9687
45
+ - Socialnumber F1: 0.9334
46
+ - State F1: 0.9744
47
+ - Street F1: 0.9534
48
+ - Tel F1: 0.9553
49
+ - Time F1: 0.9619
50
+ - Title F1: 0.9502
51
+ - Username F1: 0.9495
52
+ - Precision: 0.9163
53
+ - Recall: 0.9342
54
+ - F1: 0.9252
55
+ - Accuracy: 0.9903
56
+
57
+ ## Model description
58
+
59
+ More information needed
60
+
61
+ ## Intended uses & limitations
62
+
63
+ More information needed
64
+
65
+ ## Training and evaluation data
66
+
67
+ More information needed
68
+
69
+ ## Training procedure
70
+
71
+ ### Training hyperparameters
72
+
73
+ The following hyperparameters were used during training:
74
+ - learning_rate: 2e-05
75
+ - train_batch_size: 64
76
+ - eval_batch_size: 128
77
+ - seed: 42
78
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
79
+ - lr_scheduler_type: cosine
80
+ - lr_scheduler_warmup_ratio: 0.2
81
+ - lr_scheduler_warmup_steps: 3000
82
+ - num_epochs: 10
83
+
84
+ ### Training results
85
+
86
+ | Training Loss | Epoch | Step | Validation Loss | Bod F1 | Building F1 | Cardissuer F1 | City F1 | Country F1 | Date F1 | Driverlicense F1 | Email F1 | Geocoord F1 | Givenname1 F1 | Givenname2 F1 | Idcard F1 | Ip F1 | Lastname1 F1 | Lastname2 F1 | Lastname3 F1 | Pass F1 | Passport F1 | Postcode F1 | Secaddress F1 | Sex F1 | Socialnumber F1 | State F1 | Street F1 | Tel F1 | Time F1 | Title F1 | Username F1 | Precision | Recall | F1 | Accuracy |
87
+ |:-------------:|:------:|:----:|:---------------:|:------:|:-----------:|:-------------:|:-------:|:----------:|:-------:|:----------------:|:--------:|:-----------:|:-------------:|:-------------:|:---------:|:------:|:------------:|:------------:|:------------:|:-------:|:-----------:|:-----------:|:-------------:|:------:|:---------------:|:--------:|:---------:|:------:|:-------:|:--------:|:-----------:|:---------:|:------:|:------:|:--------:|
88
+ | 0.2231 | 2.1368 | 1000 | 0.1075 | 0.8895 | 0.9243 | 0.0 | 0.6385 | 0.8816 | 0.7987 | 0.6178 | 0.9512 | 0.6982 | 0.4720 | 0.0 | 0.5863 | 0.9082 | 0.5397 | 0.0 | 0.0 | 0.6402 | 0.6167 | 0.7858 | 0.6568 | 0.8626 | 0.7003 | 0.8859 | 0.6843 | 0.8146 | 0.9158 | 0.7302 | 0.8258 | 0.7239 | 0.7677 | 0.7452 | 0.9739 |
89
+ | 0.069 | 4.2735 | 2000 | 0.0540 | 0.9478 | 0.9698 | 0.0 | 0.9055 | 0.9433 | 0.8854 | 0.8801 | 0.9783 | 0.9676 | 0.7201 | 0.2896 | 0.8815 | 0.9731 | 0.6380 | 0.1939 | 0.0 | 0.8266 | 0.8883 | 0.9592 | 0.9645 | 0.9370 | 0.8931 | 0.9390 | 0.9237 | 0.9386 | 0.9455 | 0.9087 | 0.9195 | 0.8707 | 0.9044 | 0.8872 | 0.9865 |
90
+ | 0.0447 | 6.4103 | 3000 | 0.0455 | 0.9537 | 0.9756 | 0.0 | 0.9327 | 0.9593 | 0.9007 | 0.9030 | 0.9792 | 0.9633 | 0.7860 | 0.4337 | 0.9056 | 0.9747 | 0.7205 | 0.3587 | 0.0 | 0.8557 | 0.9144 | 0.9712 | 0.9732 | 0.9661 | 0.9204 | 0.9689 | 0.9426 | 0.9552 | 0.9588 | 0.9374 | 0.9413 | 0.9011 | 0.9232 | 0.9120 | 0.9887 |
91
+ | 0.0293 | 8.5470 | 4000 | 0.0412 | 0.9572 | 0.9765 | 0.0 | 0.9467 | 0.9664 | 0.9008 | 0.9304 | 0.9844 | 0.9655 | 0.8097 | 0.5922 | 0.9202 | 0.9807 | 0.7518 | 0.4932 | 0.0948 | 0.8835 | 0.9392 | 0.9766 | 0.9749 | 0.9687 | 0.9334 | 0.9744 | 0.9534 | 0.9553 | 0.9619 | 0.9502 | 0.9495 | 0.9163 | 0.9342 | 0.9252 | 0.9903 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.41.2
97
+ - Pytorch 2.3.1+cu121
98
+ - Datasets 2.20.0
99
+ - Tokenizers 0.19.1