Model save
Browse files
README.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: distilbert-base-cased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: distilbert-base-cased-pii-en
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# distilbert-base-cased-pii-en
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.0412
|
24 |
+
- Bod F1: 0.9572
|
25 |
+
- Building F1: 0.9765
|
26 |
+
- Cardissuer F1: 0.0
|
27 |
+
- City F1: 0.9467
|
28 |
+
- Country F1: 0.9664
|
29 |
+
- Date F1: 0.9008
|
30 |
+
- Driverlicense F1: 0.9304
|
31 |
+
- Email F1: 0.9844
|
32 |
+
- Geocoord F1: 0.9655
|
33 |
+
- Givenname1 F1: 0.8097
|
34 |
+
- Givenname2 F1: 0.5922
|
35 |
+
- Idcard F1: 0.9202
|
36 |
+
- Ip F1: 0.9807
|
37 |
+
- Lastname1 F1: 0.7518
|
38 |
+
- Lastname2 F1: 0.4932
|
39 |
+
- Lastname3 F1: 0.0948
|
40 |
+
- Pass F1: 0.8835
|
41 |
+
- Passport F1: 0.9392
|
42 |
+
- Postcode F1: 0.9766
|
43 |
+
- Secaddress F1: 0.9749
|
44 |
+
- Sex F1: 0.9687
|
45 |
+
- Socialnumber F1: 0.9334
|
46 |
+
- State F1: 0.9744
|
47 |
+
- Street F1: 0.9534
|
48 |
+
- Tel F1: 0.9553
|
49 |
+
- Time F1: 0.9619
|
50 |
+
- Title F1: 0.9502
|
51 |
+
- Username F1: 0.9495
|
52 |
+
- Precision: 0.9163
|
53 |
+
- Recall: 0.9342
|
54 |
+
- F1: 0.9252
|
55 |
+
- Accuracy: 0.9903
|
56 |
+
|
57 |
+
## Model description
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Intended uses & limitations
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training and evaluation data
|
66 |
+
|
67 |
+
More information needed
|
68 |
+
|
69 |
+
## Training procedure
|
70 |
+
|
71 |
+
### Training hyperparameters
|
72 |
+
|
73 |
+
The following hyperparameters were used during training:
|
74 |
+
- learning_rate: 2e-05
|
75 |
+
- train_batch_size: 64
|
76 |
+
- eval_batch_size: 128
|
77 |
+
- seed: 42
|
78 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
79 |
+
- lr_scheduler_type: cosine
|
80 |
+
- lr_scheduler_warmup_ratio: 0.2
|
81 |
+
- lr_scheduler_warmup_steps: 3000
|
82 |
+
- num_epochs: 10
|
83 |
+
|
84 |
+
### Training results
|
85 |
+
|
86 |
+
| Training Loss | Epoch | Step | Validation Loss | Bod F1 | Building F1 | Cardissuer F1 | City F1 | Country F1 | Date F1 | Driverlicense F1 | Email F1 | Geocoord F1 | Givenname1 F1 | Givenname2 F1 | Idcard F1 | Ip F1 | Lastname1 F1 | Lastname2 F1 | Lastname3 F1 | Pass F1 | Passport F1 | Postcode F1 | Secaddress F1 | Sex F1 | Socialnumber F1 | State F1 | Street F1 | Tel F1 | Time F1 | Title F1 | Username F1 | Precision | Recall | F1 | Accuracy |
|
87 |
+
|:-------------:|:------:|:----:|:---------------:|:------:|:-----------:|:-------------:|:-------:|:----------:|:-------:|:----------------:|:--------:|:-----------:|:-------------:|:-------------:|:---------:|:------:|:------------:|:------------:|:------------:|:-------:|:-----------:|:-----------:|:-------------:|:------:|:---------------:|:--------:|:---------:|:------:|:-------:|:--------:|:-----------:|:---------:|:------:|:------:|:--------:|
|
88 |
+
| 0.2231 | 2.1368 | 1000 | 0.1075 | 0.8895 | 0.9243 | 0.0 | 0.6385 | 0.8816 | 0.7987 | 0.6178 | 0.9512 | 0.6982 | 0.4720 | 0.0 | 0.5863 | 0.9082 | 0.5397 | 0.0 | 0.0 | 0.6402 | 0.6167 | 0.7858 | 0.6568 | 0.8626 | 0.7003 | 0.8859 | 0.6843 | 0.8146 | 0.9158 | 0.7302 | 0.8258 | 0.7239 | 0.7677 | 0.7452 | 0.9739 |
|
89 |
+
| 0.069 | 4.2735 | 2000 | 0.0540 | 0.9478 | 0.9698 | 0.0 | 0.9055 | 0.9433 | 0.8854 | 0.8801 | 0.9783 | 0.9676 | 0.7201 | 0.2896 | 0.8815 | 0.9731 | 0.6380 | 0.1939 | 0.0 | 0.8266 | 0.8883 | 0.9592 | 0.9645 | 0.9370 | 0.8931 | 0.9390 | 0.9237 | 0.9386 | 0.9455 | 0.9087 | 0.9195 | 0.8707 | 0.9044 | 0.8872 | 0.9865 |
|
90 |
+
| 0.0447 | 6.4103 | 3000 | 0.0455 | 0.9537 | 0.9756 | 0.0 | 0.9327 | 0.9593 | 0.9007 | 0.9030 | 0.9792 | 0.9633 | 0.7860 | 0.4337 | 0.9056 | 0.9747 | 0.7205 | 0.3587 | 0.0 | 0.8557 | 0.9144 | 0.9712 | 0.9732 | 0.9661 | 0.9204 | 0.9689 | 0.9426 | 0.9552 | 0.9588 | 0.9374 | 0.9413 | 0.9011 | 0.9232 | 0.9120 | 0.9887 |
|
91 |
+
| 0.0293 | 8.5470 | 4000 | 0.0412 | 0.9572 | 0.9765 | 0.0 | 0.9467 | 0.9664 | 0.9008 | 0.9304 | 0.9844 | 0.9655 | 0.8097 | 0.5922 | 0.9202 | 0.9807 | 0.7518 | 0.4932 | 0.0948 | 0.8835 | 0.9392 | 0.9766 | 0.9749 | 0.9687 | 0.9334 | 0.9744 | 0.9534 | 0.9553 | 0.9619 | 0.9502 | 0.9495 | 0.9163 | 0.9342 | 0.9252 | 0.9903 |
|
92 |
+
|
93 |
+
|
94 |
+
### Framework versions
|
95 |
+
|
96 |
+
- Transformers 4.41.2
|
97 |
+
- Pytorch 2.3.1+cu121
|
98 |
+
- Datasets 2.20.0
|
99 |
+
- Tokenizers 0.19.1
|