|
--- |
|
language: |
|
- de |
|
- en |
|
- es |
|
- fr |
|
- it |
|
- nl |
|
- pl |
|
- pt |
|
- ru |
|
- zh |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:5749 |
|
- loss:CoSENTLoss |
|
base_model: ymelka/camembert-cosmetic-finetuned |
|
datasets: |
|
- PhilipMay/stsb_multi_mt |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: Nous nous déplaçons "... par rapport au cadre de repos cosmique |
|
en mouvement ... à environ 371 km/s vers la constellation du Lion". |
|
sentences: |
|
- La dame a fait frire la viande panée dans de l'huile chaude. |
|
- Il n'y a pas d'alambic qui ne soit pas relatif à un autre objet. |
|
- Le joueur de basket-ball est sur le point de marquer des points pour son équipe. |
|
- source_sentence: Le professeur Burkhauser a effectué des recherches approfondies |
|
sur les personnes qui sont pénalisées par l'augmentation du salaire minimum. |
|
sentences: |
|
- Un adolescent parle à une fille par le biais d'une webcam. |
|
- Une femme est en train de couper des oignons verts. |
|
- Les lois sur le salaire minimum nuisent le plus aux personnes les moins qualifiées |
|
et les moins productives. |
|
- source_sentence: Bien que le terme "reine" puisse faire référence à la fois à la |
|
reine régente (souveraine) ou à la reine consort, le roi a toujours été le souverain. |
|
sentences: |
|
- Des moutons paissent dans le champ devant une rangée d'arbres. |
|
- Il y a une très bonne raison de ne pas appeler le conjoint de la Reine "Roi" - |
|
parce qu'il n'est pas le Roi. |
|
- Un groupe de personnes âgées pose autour d'une table à manger. |
|
- source_sentence: Deux pygargues à tête blanche perchés sur une branche. |
|
sentences: |
|
- Un groupe de militaires joue dans un quintette de cuivres. |
|
- Deux aigles sont perchés sur une branche. |
|
- Un homme qui joue de la guitare sous la pluie. |
|
- source_sentence: Un homme joue de la guitare. |
|
sentences: |
|
- Il est possible qu'un système solaire comme le nôtre existe en dehors d'une galaxie. |
|
- Un homme joue de la flûte. |
|
- Un homme est en train de manger une banane. |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on ymelka/camembert-cosmetic-finetuned |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: stsb fr dev |
|
type: stsb-fr-dev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6401461834329478 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6661576168424006 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7077411059971963 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7104395816607704 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6183470655093759 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6339424060254548 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.18614455072383299 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.21677402345623561 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7077411059971963 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.7104395816607704 |
|
name: Spearman Max |
|
- type: pearson_cosine |
|
value: 0.834390325106948 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8564941342147334 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8518548236293758 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.854193303324745 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8541012365072966 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8555434573522197 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.4989804086580052 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5094008186566353 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8541012365072966 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8564941342147334 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: stsb fr test |
|
type: stsb-fr-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7979696368103 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8219240068315988 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8237827107867745 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8221440625680553 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8230384709547542 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8218369251066925 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.4089365107737232 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.4588995887587045 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8237827107867745 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8221440625680553 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on ymelka/camembert-cosmetic-finetuned |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [ymelka/camembert-cosmetic-finetuned](https://huggingface.co/ymelka/camembert-cosmetic-finetuned) on the [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [ymelka/camembert-cosmetic-finetuned](https://huggingface.co/ymelka/camembert-cosmetic-finetuned) <!-- at revision cd4cb90f9388340c5f02740130efd30336c08905 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) |
|
- **Languages:** de, en, es, fr, it, nl, pl, pt, ru, zh |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: CamembertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("ymelka/camembert-cosmetic-similarity") |
|
# Run inference |
|
sentences = [ |
|
'Un homme joue de la guitare.', |
|
'Un homme est en train de manger une banane.', |
|
'Un homme joue de la flûte.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `stsb-fr-dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6401 | |
|
| **spearman_cosine** | **0.6662** | |
|
| pearson_manhattan | 0.7077 | |
|
| spearman_manhattan | 0.7104 | |
|
| pearson_euclidean | 0.6183 | |
|
| spearman_euclidean | 0.6339 | |
|
| pearson_dot | 0.1861 | |
|
| spearman_dot | 0.2168 | |
|
| pearson_max | 0.7077 | |
|
| spearman_max | 0.7104 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `stsb-fr-dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8344 | |
|
| **spearman_cosine** | **0.8565** | |
|
| pearson_manhattan | 0.8519 | |
|
| spearman_manhattan | 0.8542 | |
|
| pearson_euclidean | 0.8541 | |
|
| spearman_euclidean | 0.8555 | |
|
| pearson_dot | 0.499 | |
|
| spearman_dot | 0.5094 | |
|
| pearson_max | 0.8541 | |
|
| spearman_max | 0.8565 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `stsb-fr-test` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.798 | |
|
| **spearman_cosine** | **0.8219** | |
|
| pearson_manhattan | 0.8238 | |
|
| spearman_manhattan | 0.8221 | |
|
| pearson_euclidean | 0.823 | |
|
| spearman_euclidean | 0.8218 | |
|
| pearson_dot | 0.4089 | |
|
| spearman_dot | 0.4589 | |
|
| pearson_max | 0.8238 | |
|
| spearman_max | 0.8221 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### PhilipMay/stsb_multi_mt |
|
|
|
* Dataset: [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c) |
|
* Size: 5,749 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 11.1 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.04 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.7</li><li>max: 5.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-----------------------------------------------------------|:---------------------------------------------------------------------|:-------------------------------| |
|
| <code>Un avion est en train de décoller.</code> | <code>Un avion est en train de décoller.</code> | <code>5.0</code> | |
|
| <code>Un homme joue d'une grande flûte.</code> | <code>Un homme joue de la flûte.</code> | <code>3.799999952316284</code> | |
|
| <code>Un homme étale du fromage râpé sur une pizza.</code> | <code>Un homme étale du fromage râpé sur une pizza non cuite.</code> | <code>3.799999952316284</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### PhilipMay/stsb_multi_mt |
|
|
|
* Dataset: [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c) |
|
* Size: 1,500 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 17.45 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 17.35 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.36</li><li>max: 5.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-------------------------------------------------------------------------|:----------------------------------------------------------------------------|:------------------| |
|
| <code>Un homme avec un casque de sécurité est en train de danser.</code> | <code>Un homme portant un casque de sécurité est en train de danser.</code> | <code>5.0</code> | |
|
| <code>Un jeune enfant monte à cheval.</code> | <code>Un enfant monte à cheval.</code> | <code>4.75</code> | |
|
| <code>Un homme donne une souris à un serpent.</code> | <code>L'homme donne une souris au serpent.</code> | <code>5.0</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.01 |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.01 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 3 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | stsb-fr-dev_spearman_cosine | stsb-fr-test_spearman_cosine | |
|
|:------:|:----:|:-------------:|:------:|:---------------------------:|:----------------------------:| |
|
| 0 | 0 | - | - | 0.6661 | - | |
|
| 0.2778 | 100 | 4.9452 | 4.4417 | 0.7733 | - | |
|
| 0.5556 | 200 | 4.667 | 4.4273 | 0.7986 | - | |
|
| 0.8333 | 300 | 4.4904 | 4.3058 | 0.8338 | - | |
|
| 1.1111 | 400 | 4.1679 | 4.2723 | 0.8491 | - | |
|
| 1.3889 | 500 | 4.138 | 4.3575 | 0.8464 | - | |
|
| 1.6667 | 600 | 4.5737 | 4.3427 | 0.8479 | - | |
|
| 1.9444 | 700 | 4.3086 | 4.4455 | 0.8510 | - | |
|
| 2.2222 | 800 | 3.8711 | 4.4135 | 0.8590 | - | |
|
| 2.5 | 900 | 4.064 | 4.4775 | 0.8567 | - | |
|
| 2.7778 | 1000 | 4.2255 | 4.4733 | 0.8565 | - | |
|
| 3.0 | 1080 | - | - | - | 0.8219 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.31.0 |
|
- Datasets: 2.19.2 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### CoSENTLoss |
|
```bibtex |
|
@online{kexuefm-8847, |
|
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, |
|
author={Su Jianlin}, |
|
year={2022}, |
|
month={Jan}, |
|
url={https://kexue.fm/archives/8847}, |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |