File size: 22,295 Bytes
f09530d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
---
language:
- de
- en
- es
- fr
- it
- nl
- pl
- pt
- ru
- zh
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5749
- loss:CoSENTLoss
base_model: ymelka/camembert-cosmetic-finetuned
datasets:
- PhilipMay/stsb_multi_mt
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Nous nous déplaçons "... par rapport au cadre de repos cosmique
    en mouvement ... à environ 371 km/s vers la constellation du Lion".
  sentences:
  - La dame a fait frire la viande panée dans de l'huile chaude.
  - Il n'y a pas d'alambic qui ne soit pas relatif à un autre objet.
  - Le joueur de basket-ball est sur le point de marquer des points pour son équipe.
- source_sentence: Le professeur Burkhauser a effectué des recherches approfondies
    sur les personnes qui sont pénalisées par l'augmentation du salaire minimum.
  sentences:
  - Un adolescent parle à une fille par le biais d'une webcam.
  - Une femme est en train de couper des oignons verts.
  - Les lois sur le salaire minimum nuisent le plus aux personnes les moins qualifiées
    et les moins productives.
- source_sentence: Bien que le terme "reine" puisse faire référence à la fois à la
    reine régente (souveraine) ou à la reine consort, le roi a toujours été le souverain.
  sentences:
  - Des moutons paissent dans le champ devant une rangée d'arbres.
  - Il y a une très bonne raison de ne pas appeler le conjoint de la Reine "Roi" -
    parce qu'il n'est pas le Roi.
  - Un groupe de personnes âgées pose autour d'une table à manger.
- source_sentence: Deux pygargues à tête blanche perchés sur une branche.
  sentences:
  - Un groupe de militaires joue dans un quintette de cuivres.
  - Deux aigles sont perchés sur une branche.
  - Un homme qui joue de la guitare sous la pluie.
- source_sentence: Un homme joue de la guitare.
  sentences:
  - Il est possible qu'un système solaire comme le nôtre existe en dehors d'une galaxie.
  - Un homme joue de la flûte.
  - Un homme est en train de manger une banane.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on ymelka/camembert-cosmetic-finetuned
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: stsb fr dev
      type: stsb-fr-dev
    metrics:
    - type: pearson_cosine
      value: 0.6401461834329478
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6661576168424006
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7077411059971963
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7104395816607704
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.6183470655093759
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.6339424060254548
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.18614455072383299
      name: Pearson Dot
    - type: spearman_dot
      value: 0.21677402345623561
      name: Spearman Dot
    - type: pearson_max
      value: 0.7077411059971963
      name: Pearson Max
    - type: spearman_max
      value: 0.7104395816607704
      name: Spearman Max
    - type: pearson_cosine
      value: 0.834390325106948
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8564941342147334
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8518548236293758
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.854193303324745
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8541012365072966
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8555434573522197
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.4989804086580052
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5094008186566353
      name: Spearman Dot
    - type: pearson_max
      value: 0.8541012365072966
      name: Pearson Max
    - type: spearman_max
      value: 0.8564941342147334
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: stsb fr test
      type: stsb-fr-test
    metrics:
    - type: pearson_cosine
      value: 0.7979696368103
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8219240068315988
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8237827107867745
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8221440625680553
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8230384709547542
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8218369251066925
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.4089365107737232
      name: Pearson Dot
    - type: spearman_dot
      value: 0.4588995887587045
      name: Spearman Dot
    - type: pearson_max
      value: 0.8237827107867745
      name: Pearson Max
    - type: spearman_max
      value: 0.8221440625680553
      name: Spearman Max
---

# SentenceTransformer based on ymelka/camembert-cosmetic-finetuned

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [ymelka/camembert-cosmetic-finetuned](https://huggingface.co/ymelka/camembert-cosmetic-finetuned) on the [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [ymelka/camembert-cosmetic-finetuned](https://huggingface.co/ymelka/camembert-cosmetic-finetuned) <!-- at revision cd4cb90f9388340c5f02740130efd30336c08905 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
- **Languages:** de, en, es, fr, it, nl, pl, pt, ru, zh
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: CamembertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ymelka/camembert-cosmetic-similarity")
# Run inference
sentences = [
    'Un homme joue de la guitare.',
    'Un homme est en train de manger une banane.',
    'Un homme joue de la flûte.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `stsb-fr-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.6401     |
| **spearman_cosine** | **0.6662** |
| pearson_manhattan   | 0.7077     |
| spearman_manhattan  | 0.7104     |
| pearson_euclidean   | 0.6183     |
| spearman_euclidean  | 0.6339     |
| pearson_dot         | 0.1861     |
| spearman_dot        | 0.2168     |
| pearson_max         | 0.7077     |
| spearman_max        | 0.7104     |

#### Semantic Similarity
* Dataset: `stsb-fr-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8344     |
| **spearman_cosine** | **0.8565** |
| pearson_manhattan   | 0.8519     |
| spearman_manhattan  | 0.8542     |
| pearson_euclidean   | 0.8541     |
| spearman_euclidean  | 0.8555     |
| pearson_dot         | 0.499      |
| spearman_dot        | 0.5094     |
| pearson_max         | 0.8541     |
| spearman_max        | 0.8565     |

#### Semantic Similarity
* Dataset: `stsb-fr-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.798      |
| **spearman_cosine** | **0.8219** |
| pearson_manhattan   | 0.8238     |
| spearman_manhattan  | 0.8221     |
| pearson_euclidean   | 0.823      |
| spearman_euclidean  | 0.8218     |
| pearson_dot         | 0.4089     |
| spearman_dot        | 0.4589     |
| pearson_max         | 0.8238     |
| spearman_max        | 0.8221     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### PhilipMay/stsb_multi_mt

* Dataset: [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 5,749 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                         | score                                                         |
  |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
  | type    | string                                                                           | string                                                                            | float                                                         |
  | details | <ul><li>min: 6 tokens</li><li>mean: 11.1 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.04 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.7</li><li>max: 5.0</li></ul> |
* Samples:
  | sentence1                                                  | sentence2                                                            | score                          |
  |:-----------------------------------------------------------|:---------------------------------------------------------------------|:-------------------------------|
  | <code>Un avion est en train de décoller.</code>            | <code>Un avion est en train de décoller.</code>                      | <code>5.0</code>               |
  | <code>Un homme joue d'une grande flûte.</code>             | <code>Un homme joue de la flûte.</code>                              | <code>3.799999952316284</code> |
  | <code>Un homme étale du fromage râpé sur une pizza.</code> | <code>Un homme étale du fromage râpé sur une pizza non cuite.</code> | <code>3.799999952316284</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Evaluation Dataset

#### PhilipMay/stsb_multi_mt

* Dataset: [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
* Size: 1,500 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | score                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 6 tokens</li><li>mean: 17.45 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 17.35 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.36</li><li>max: 5.0</li></ul> |
* Samples:
  | sentence1                                                                | sentence2                                                                   | score             |
  |:-------------------------------------------------------------------------|:----------------------------------------------------------------------------|:------------------|
  | <code>Un homme avec un casque de sécurité est en train de danser.</code> | <code>Un homme portant un casque de sécurité est en train de danser.</code> | <code>5.0</code>  |
  | <code>Un jeune enfant monte à cheval.</code>                             | <code>Un enfant monte à cheval.</code>                                      | <code>4.75</code> |
  | <code>Un homme donne une souris à un serpent.</code>                     | <code>L'homme donne une souris au serpent.</code>                           | <code>5.0</code>  |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `weight_decay`: 0.01
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | loss   | stsb-fr-dev_spearman_cosine | stsb-fr-test_spearman_cosine |
|:------:|:----:|:-------------:|:------:|:---------------------------:|:----------------------------:|
| 0      | 0    | -             | -      | 0.6661                      | -                            |
| 0.2778 | 100  | 4.9452        | 4.4417 | 0.7733                      | -                            |
| 0.5556 | 200  | 4.667         | 4.4273 | 0.7986                      | -                            |
| 0.8333 | 300  | 4.4904        | 4.3058 | 0.8338                      | -                            |
| 1.1111 | 400  | 4.1679        | 4.2723 | 0.8491                      | -                            |
| 1.3889 | 500  | 4.138         | 4.3575 | 0.8464                      | -                            |
| 1.6667 | 600  | 4.5737        | 4.3427 | 0.8479                      | -                            |
| 1.9444 | 700  | 4.3086        | 4.4455 | 0.8510                      | -                            |
| 2.2222 | 800  | 3.8711        | 4.4135 | 0.8590                      | -                            |
| 2.5    | 900  | 4.064         | 4.4775 | 0.8567                      | -                            |
| 2.7778 | 1000 | 4.2255        | 4.4733 | 0.8565                      | -                            |
| 3.0    | 1080 | -             | -      | -                           | 0.8219                       |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->