yijisuk's picture
End of training
e2428a7 verified
|
raw
history blame
9.28 kB
metadata
license: other
base_model: nvidia/mit-b0
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b0-miic-tl
    results: []

segformer-b0-miic-tl

This model is a fine-tuned version of nvidia/mit-b0 on the yijisuk/ic-chip-sample dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2252
  • Mean Iou: 0.4213
  • Mean Accuracy: 0.8427
  • Overall Accuracy: 0.8427
  • Accuracy Unlabeled: nan
  • Accuracy Circuit: 0.8427
  • Iou Unlabeled: 0.0
  • Iou Circuit: 0.8427
  • Dice Coefficient: 0.8060

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Circuit Iou Unlabeled Iou Circuit Dice Coefficient
0.564 1.25 100 0.3976 0.2158 0.4316 0.4316 nan 0.4316 0.0 0.4316 0.3032
0.523 2.5 200 0.3853 0.2051 0.4102 0.4102 nan 0.4102 0.0 0.4102 0.2797
0.5447 3.75 300 0.3570 0.1866 0.3731 0.3731 nan 0.3731 0.0 0.3731 0.2145
0.5087 5.0 400 0.3325 0.2632 0.5264 0.5264 nan 0.5264 0.0 0.5264 0.4352
0.5064 6.25 500 0.3596 0.3047 0.6094 0.6094 nan 0.6094 0.0 0.6094 0.5244
0.4947 7.5 600 0.3153 0.3062 0.6124 0.6124 nan 0.6124 0.0 0.6124 0.5797
0.4703 8.75 700 0.2752 0.4433 0.8866 0.8866 nan 0.8866 0.0 0.8866 0.8004
0.4679 10.0 800 0.2900 0.3833 0.7666 0.7666 nan 0.7666 0.0 0.7666 0.7333
0.4691 11.25 900 0.3102 0.4024 0.8048 0.8048 nan 0.8048 0.0 0.8048 0.7452
0.4648 12.5 1000 0.2768 0.3698 0.7396 0.7396 nan 0.7396 0.0 0.7396 0.7157
0.4459 13.75 1100 0.2575 0.4120 0.8239 0.8239 nan 0.8239 0.0 0.8239 0.7781
0.446 15.0 1200 0.2927 0.4653 0.9306 0.9306 nan 0.9306 0.0 0.9306 0.8262
0.4299 16.25 1300 0.2682 0.3375 0.6749 0.6749 nan 0.6749 0.0 0.6749 0.6881
0.4464 17.5 1400 0.2379 0.4282 0.8563 0.8563 nan 0.8563 0.0 0.8563 0.8051
0.4241 18.75 1500 0.2479 0.3996 0.7993 0.7993 nan 0.7993 0.0 0.7993 0.7770
0.4154 20.0 1600 0.2441 0.4133 0.8265 0.8265 nan 0.8265 0.0 0.8265 0.7923
0.428 21.25 1700 0.2505 0.4258 0.8515 0.8515 nan 0.8515 0.0 0.8515 0.8082
0.4126 22.5 1800 0.2419 0.4549 0.9097 0.9097 nan 0.9097 0.0 0.9097 0.8370
0.3986 23.75 1900 0.2364 0.3863 0.7726 0.7726 nan 0.7726 0.0 0.7726 0.7577
0.4053 25.0 2000 0.2419 0.3752 0.7504 0.7504 nan 0.7504 0.0 0.7504 0.7367
0.4018 26.25 2100 0.2310 0.4299 0.8598 0.8598 nan 0.8598 0.0 0.8598 0.8078
0.4048 27.5 2200 0.2292 0.4288 0.8577 0.8577 nan 0.8577 0.0 0.8577 0.8095
0.3838 28.75 2300 0.2294 0.4185 0.8371 0.8371 nan 0.8371 0.0 0.8371 0.7979
0.389 30.0 2400 0.2255 0.4337 0.8675 0.8675 nan 0.8675 0.0 0.8675 0.8181
0.3889 31.25 2500 0.2247 0.4307 0.8613 0.8613 nan 0.8613 0.0 0.8613 0.8180
0.4058 32.5 2600 0.2290 0.3806 0.7611 0.7611 nan 0.7611 0.0 0.7611 0.7493
0.3822 33.75 2700 0.2301 0.4023 0.8046 0.8046 nan 0.8046 0.0 0.8046 0.7794
0.3807 35.0 2800 0.2261 0.3952 0.7904 0.7904 nan 0.7904 0.0 0.7904 0.7691
0.3993 36.25 2900 0.2199 0.4163 0.8326 0.8326 nan 0.8326 0.0 0.8326 0.7997
0.3586 37.5 3000 0.2238 0.4098 0.8195 0.8195 nan 0.8195 0.0 0.8195 0.7897
0.3894 38.75 3100 0.2334 0.3539 0.7077 0.7077 nan 0.7077 0.0 0.7077 0.7093
0.3627 40.0 3200 0.2311 0.3646 0.7292 0.7292 nan 0.7292 0.0 0.7292 0.7249
0.3704 41.25 3300 0.2266 0.3876 0.7751 0.7751 nan 0.7751 0.0 0.7751 0.7621
0.3808 42.5 3400 0.2227 0.3996 0.7993 0.7993 nan 0.7993 0.0 0.7993 0.7793
0.3631 43.75 3500 0.2222 0.3910 0.7820 0.7820 nan 0.7820 0.0 0.7820 0.7655
0.367 45.0 3600 0.2253 0.4118 0.8237 0.8237 nan 0.8237 0.0 0.8237 0.7939
0.3609 46.25 3700 0.2225 0.4082 0.8165 0.8165 nan 0.8165 0.0 0.8165 0.7897
0.3515 47.5 3800 0.2226 0.4210 0.8420 0.8420 nan 0.8420 0.0 0.8420 0.8064
0.3888 48.75 3900 0.2283 0.3815 0.7630 0.7630 nan 0.7630 0.0 0.7630 0.7509
0.3503 50.0 4000 0.2252 0.4213 0.8427 0.8427 nan 0.8427 0.0 0.8427 0.8060

Framework versions

  • Transformers 4.36.2
  • Pytorch 1.11.0+cu115
  • Datasets 2.15.0
  • Tokenizers 0.15.0