File size: 9,279 Bytes
3074525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2428a7
 
 
 
3074525
e2428a7
3074525
e2428a7
 
3074525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2428a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3074525
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---

license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-miic-tl
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b0-miic-tl

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the yijisuk/ic-chip-sample dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2252
- Mean Iou: 0.4213
- Mean Accuracy: 0.8427
- Overall Accuracy: 0.8427
- Accuracy Unlabeled: nan
- Accuracy Circuit: 0.8427
- Iou Unlabeled: 0.0
- Iou Circuit: 0.8427
- Dice Coefficient: 0.8060

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05

- train_batch_size: 2

- eval_batch_size: 2

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Circuit | Iou Unlabeled | Iou Circuit | Dice Coefficient |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:-------------:|:-----------:|:----------------:|
| 0.564         | 1.25  | 100  | 0.3976          | 0.2158   | 0.4316        | 0.4316           | nan                | 0.4316           | 0.0           | 0.4316      | 0.3032           |
| 0.523         | 2.5   | 200  | 0.3853          | 0.2051   | 0.4102        | 0.4102           | nan                | 0.4102           | 0.0           | 0.4102      | 0.2797           |
| 0.5447        | 3.75  | 300  | 0.3570          | 0.1866   | 0.3731        | 0.3731           | nan                | 0.3731           | 0.0           | 0.3731      | 0.2145           |
| 0.5087        | 5.0   | 400  | 0.3325          | 0.2632   | 0.5264        | 0.5264           | nan                | 0.5264           | 0.0           | 0.5264      | 0.4352           |
| 0.5064        | 6.25  | 500  | 0.3596          | 0.3047   | 0.6094        | 0.6094           | nan                | 0.6094           | 0.0           | 0.6094      | 0.5244           |
| 0.4947        | 7.5   | 600  | 0.3153          | 0.3062   | 0.6124        | 0.6124           | nan                | 0.6124           | 0.0           | 0.6124      | 0.5797           |
| 0.4703        | 8.75  | 700  | 0.2752          | 0.4433   | 0.8866        | 0.8866           | nan                | 0.8866           | 0.0           | 0.8866      | 0.8004           |
| 0.4679        | 10.0  | 800  | 0.2900          | 0.3833   | 0.7666        | 0.7666           | nan                | 0.7666           | 0.0           | 0.7666      | 0.7333           |
| 0.4691        | 11.25 | 900  | 0.3102          | 0.4024   | 0.8048        | 0.8048           | nan                | 0.8048           | 0.0           | 0.8048      | 0.7452           |
| 0.4648        | 12.5  | 1000 | 0.2768          | 0.3698   | 0.7396        | 0.7396           | nan                | 0.7396           | 0.0           | 0.7396      | 0.7157           |
| 0.4459        | 13.75 | 1100 | 0.2575          | 0.4120   | 0.8239        | 0.8239           | nan                | 0.8239           | 0.0           | 0.8239      | 0.7781           |
| 0.446         | 15.0  | 1200 | 0.2927          | 0.4653   | 0.9306        | 0.9306           | nan                | 0.9306           | 0.0           | 0.9306      | 0.8262           |
| 0.4299        | 16.25 | 1300 | 0.2682          | 0.3375   | 0.6749        | 0.6749           | nan                | 0.6749           | 0.0           | 0.6749      | 0.6881           |
| 0.4464        | 17.5  | 1400 | 0.2379          | 0.4282   | 0.8563        | 0.8563           | nan                | 0.8563           | 0.0           | 0.8563      | 0.8051           |
| 0.4241        | 18.75 | 1500 | 0.2479          | 0.3996   | 0.7993        | 0.7993           | nan                | 0.7993           | 0.0           | 0.7993      | 0.7770           |
| 0.4154        | 20.0  | 1600 | 0.2441          | 0.4133   | 0.8265        | 0.8265           | nan                | 0.8265           | 0.0           | 0.8265      | 0.7923           |
| 0.428         | 21.25 | 1700 | 0.2505          | 0.4258   | 0.8515        | 0.8515           | nan                | 0.8515           | 0.0           | 0.8515      | 0.8082           |
| 0.4126        | 22.5  | 1800 | 0.2419          | 0.4549   | 0.9097        | 0.9097           | nan                | 0.9097           | 0.0           | 0.9097      | 0.8370           |
| 0.3986        | 23.75 | 1900 | 0.2364          | 0.3863   | 0.7726        | 0.7726           | nan                | 0.7726           | 0.0           | 0.7726      | 0.7577           |
| 0.4053        | 25.0  | 2000 | 0.2419          | 0.3752   | 0.7504        | 0.7504           | nan                | 0.7504           | 0.0           | 0.7504      | 0.7367           |
| 0.4018        | 26.25 | 2100 | 0.2310          | 0.4299   | 0.8598        | 0.8598           | nan                | 0.8598           | 0.0           | 0.8598      | 0.8078           |
| 0.4048        | 27.5  | 2200 | 0.2292          | 0.4288   | 0.8577        | 0.8577           | nan                | 0.8577           | 0.0           | 0.8577      | 0.8095           |
| 0.3838        | 28.75 | 2300 | 0.2294          | 0.4185   | 0.8371        | 0.8371           | nan                | 0.8371           | 0.0           | 0.8371      | 0.7979           |
| 0.389         | 30.0  | 2400 | 0.2255          | 0.4337   | 0.8675        | 0.8675           | nan                | 0.8675           | 0.0           | 0.8675      | 0.8181           |
| 0.3889        | 31.25 | 2500 | 0.2247          | 0.4307   | 0.8613        | 0.8613           | nan                | 0.8613           | 0.0           | 0.8613      | 0.8180           |
| 0.4058        | 32.5  | 2600 | 0.2290          | 0.3806   | 0.7611        | 0.7611           | nan                | 0.7611           | 0.0           | 0.7611      | 0.7493           |
| 0.3822        | 33.75 | 2700 | 0.2301          | 0.4023   | 0.8046        | 0.8046           | nan                | 0.8046           | 0.0           | 0.8046      | 0.7794           |
| 0.3807        | 35.0  | 2800 | 0.2261          | 0.3952   | 0.7904        | 0.7904           | nan                | 0.7904           | 0.0           | 0.7904      | 0.7691           |
| 0.3993        | 36.25 | 2900 | 0.2199          | 0.4163   | 0.8326        | 0.8326           | nan                | 0.8326           | 0.0           | 0.8326      | 0.7997           |
| 0.3586        | 37.5  | 3000 | 0.2238          | 0.4098   | 0.8195        | 0.8195           | nan                | 0.8195           | 0.0           | 0.8195      | 0.7897           |
| 0.3894        | 38.75 | 3100 | 0.2334          | 0.3539   | 0.7077        | 0.7077           | nan                | 0.7077           | 0.0           | 0.7077      | 0.7093           |
| 0.3627        | 40.0  | 3200 | 0.2311          | 0.3646   | 0.7292        | 0.7292           | nan                | 0.7292           | 0.0           | 0.7292      | 0.7249           |
| 0.3704        | 41.25 | 3300 | 0.2266          | 0.3876   | 0.7751        | 0.7751           | nan                | 0.7751           | 0.0           | 0.7751      | 0.7621           |
| 0.3808        | 42.5  | 3400 | 0.2227          | 0.3996   | 0.7993        | 0.7993           | nan                | 0.7993           | 0.0           | 0.7993      | 0.7793           |
| 0.3631        | 43.75 | 3500 | 0.2222          | 0.3910   | 0.7820        | 0.7820           | nan                | 0.7820           | 0.0           | 0.7820      | 0.7655           |
| 0.367         | 45.0  | 3600 | 0.2253          | 0.4118   | 0.8237        | 0.8237           | nan                | 0.8237           | 0.0           | 0.8237      | 0.7939           |
| 0.3609        | 46.25 | 3700 | 0.2225          | 0.4082   | 0.8165        | 0.8165           | nan                | 0.8165           | 0.0           | 0.8165      | 0.7897           |
| 0.3515        | 47.5  | 3800 | 0.2226          | 0.4210   | 0.8420        | 0.8420           | nan                | 0.8420           | 0.0           | 0.8420      | 0.8064           |
| 0.3888        | 48.75 | 3900 | 0.2283          | 0.3815   | 0.7630        | 0.7630           | nan                | 0.7630           | 0.0           | 0.7630      | 0.7509           |
| 0.3503        | 50.0  | 4000 | 0.2252          | 0.4213   | 0.8427        | 0.8427           | nan                | 0.8427           | 0.0           | 0.8427      | 0.8060           |


### Framework versions

- Transformers 4.36.2
- Pytorch 1.11.0+cu115
- Datasets 2.15.0
- Tokenizers 0.15.0