yijisuk's picture
End of training
eee4578 verified
|
raw
history blame
4.79 kB
metadata
license: other
base_model: nvidia/mit-b0
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b0-miic-tl
    results: []

segformer-b0-miic-tl

This model is a fine-tuned version of nvidia/mit-b0 on the yijisuk/ic-chip-sample dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3532
  • Mean Iou: 0.4001
  • Mean Accuracy: 0.8002
  • Overall Accuracy: 0.8002
  • Accuracy Unlabeled: nan
  • Accuracy Circuit: 0.8002
  • Iou Unlabeled: 0.0
  • Iou Circuit: 0.8002
  • Dice Coefficient: 0.7456

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Circuit Iou Unlabeled Iou Circuit Dice Coefficient
0.5722 3.12 250 0.4296 0.3809 0.7618 0.7618 nan 0.7618 0.0 0.7618 0.6766
0.547 6.25 500 0.3983 0.3370 0.6739 0.6739 nan 0.6739 0.0 0.6739 0.6065
0.5147 9.38 750 0.3643 0.3487 0.6974 0.6974 nan 0.6974 0.0 0.6974 0.6477
0.5083 12.5 1000 0.3505 0.3006 0.6012 0.6012 nan 0.6012 0.0 0.6012 0.5586
0.4818 15.62 1250 0.3184 0.4400 0.8799 0.8799 nan 0.8799 0.0 0.8799 0.7758
0.4664 18.75 1500 0.3622 0.4347 0.8693 0.8693 nan 0.8693 0.0 0.8693 0.7755
0.4504 21.88 1750 0.3279 0.4327 0.8654 0.8654 nan 0.8654 0.0 0.8654 0.7792
0.4427 25.0 2000 0.3168 0.4386 0.8771 0.8771 nan 0.8771 0.0 0.8771 0.7840
0.4336 28.12 2250 0.2790 0.4100 0.8200 0.8200 nan 0.8200 0.0 0.8200 0.7636
0.4226 31.25 2500 0.3237 0.4148 0.8295 0.8295 nan 0.8295 0.0 0.8295 0.7641
0.4155 34.38 2750 0.3336 0.4169 0.8339 0.8339 nan 0.8339 0.0 0.8339 0.7664
0.4082 37.5 3000 0.3787 0.4267 0.8533 0.8533 nan 0.8533 0.0 0.8533 0.7760
0.403 40.62 3250 0.3541 0.3693 0.7387 0.7387 nan 0.7387 0.0 0.7387 0.6942
0.398 43.75 3500 0.3361 0.3864 0.7728 0.7728 nan 0.7728 0.0 0.7728 0.7244
0.3943 46.88 3750 0.3599 0.4053 0.8106 0.8106 nan 0.8106 0.0 0.8106 0.7519
0.3951 50.0 4000 0.3532 0.4001 0.8002 0.8002 nan 0.8002 0.0 0.8002 0.7456

Framework versions

  • Transformers 4.36.2
  • Pytorch 1.11.0+cu115
  • Datasets 2.15.0
  • Tokenizers 0.15.0