File size: 4,791 Bytes
3074525 eee4578 3074525 eee4578 3074525 eee4578 3074525 e2428a7 eee4578 3074525 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-miic-tl
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b0-miic-tl
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the yijisuk/ic-chip-sample dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3532
- Mean Iou: 0.4001
- Mean Accuracy: 0.8002
- Overall Accuracy: 0.8002
- Accuracy Unlabeled: nan
- Accuracy Circuit: 0.8002
- Iou Unlabeled: 0.0
- Iou Circuit: 0.8002
- Dice Coefficient: 0.7456
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Circuit | Iou Unlabeled | Iou Circuit | Dice Coefficient |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:----------------:|:-------------:|:-----------:|:----------------:|
| 0.5722 | 3.12 | 250 | 0.4296 | 0.3809 | 0.7618 | 0.7618 | nan | 0.7618 | 0.0 | 0.7618 | 0.6766 |
| 0.547 | 6.25 | 500 | 0.3983 | 0.3370 | 0.6739 | 0.6739 | nan | 0.6739 | 0.0 | 0.6739 | 0.6065 |
| 0.5147 | 9.38 | 750 | 0.3643 | 0.3487 | 0.6974 | 0.6974 | nan | 0.6974 | 0.0 | 0.6974 | 0.6477 |
| 0.5083 | 12.5 | 1000 | 0.3505 | 0.3006 | 0.6012 | 0.6012 | nan | 0.6012 | 0.0 | 0.6012 | 0.5586 |
| 0.4818 | 15.62 | 1250 | 0.3184 | 0.4400 | 0.8799 | 0.8799 | nan | 0.8799 | 0.0 | 0.8799 | 0.7758 |
| 0.4664 | 18.75 | 1500 | 0.3622 | 0.4347 | 0.8693 | 0.8693 | nan | 0.8693 | 0.0 | 0.8693 | 0.7755 |
| 0.4504 | 21.88 | 1750 | 0.3279 | 0.4327 | 0.8654 | 0.8654 | nan | 0.8654 | 0.0 | 0.8654 | 0.7792 |
| 0.4427 | 25.0 | 2000 | 0.3168 | 0.4386 | 0.8771 | 0.8771 | nan | 0.8771 | 0.0 | 0.8771 | 0.7840 |
| 0.4336 | 28.12 | 2250 | 0.2790 | 0.4100 | 0.8200 | 0.8200 | nan | 0.8200 | 0.0 | 0.8200 | 0.7636 |
| 0.4226 | 31.25 | 2500 | 0.3237 | 0.4148 | 0.8295 | 0.8295 | nan | 0.8295 | 0.0 | 0.8295 | 0.7641 |
| 0.4155 | 34.38 | 2750 | 0.3336 | 0.4169 | 0.8339 | 0.8339 | nan | 0.8339 | 0.0 | 0.8339 | 0.7664 |
| 0.4082 | 37.5 | 3000 | 0.3787 | 0.4267 | 0.8533 | 0.8533 | nan | 0.8533 | 0.0 | 0.8533 | 0.7760 |
| 0.403 | 40.62 | 3250 | 0.3541 | 0.3693 | 0.7387 | 0.7387 | nan | 0.7387 | 0.0 | 0.7387 | 0.6942 |
| 0.398 | 43.75 | 3500 | 0.3361 | 0.3864 | 0.7728 | 0.7728 | nan | 0.7728 | 0.0 | 0.7728 | 0.7244 |
| 0.3943 | 46.88 | 3750 | 0.3599 | 0.4053 | 0.8106 | 0.8106 | nan | 0.8106 | 0.0 | 0.8106 | 0.7519 |
| 0.3951 | 50.0 | 4000 | 0.3532 | 0.4001 | 0.8002 | 0.8002 | nan | 0.8002 | 0.0 | 0.8002 | 0.7456 |
### Framework versions
- Transformers 4.36.2
- Pytorch 1.11.0+cu115
- Datasets 2.15.0
- Tokenizers 0.15.0
|