lwm / README.md
Sadjad Alikhani
Update README.md
bfaa02d verified
|
raw
history blame
6.5 kB

LWM: Large Wireless Model

This repository contains the implementation of LWM (Large Wireless Model), a pre-trained model for processing and extracting features from wireless communication datasets, specifically DeepMIMO. The instructions below will help you load DeepMIMO data, use the LWM model and weights, tokenize DeepMIMO scenario data, and generate either raw channels or the inferred LWM CLS or channel embeddings.

How to Use

LWM Inference

  1. Clone the Repository

    Clone the Hugging Face repository to your local machine using the following code:

    import subprocess
    import os
    import sys
    import importlib.util
    import torch
    
    # Hugging Face public repository URL
    repo_url = "https://huggingface.co/sadjadalikhani/LWM"
    
    # Directory where the repo will be cloned
    clone_dir = "./LWM"
    
    # Step 1: Clone the repository if it hasn't been cloned already
    if not os.path.exists(clone_dir):
        print(f"Cloning repository from {repo_url} into {clone_dir}...")
        result = subprocess.run(["git", "clone", repo_url, clone_dir], capture_output=True, text=True)
    
        if result.returncode != 0:
            print(f"Error cloning repository: {result.stderr}")
            sys.exit(1)  # Exit on failure
        print(f"Repository cloned successfully into {clone_dir}")
    else:
        print(f"Repository already cloned into {clone_dir}")
    
    # Step 2: Add the cloned directory to Python path
    sys.path.append(clone_dir)
    
    # Step 3: Dynamic module import and function exposure
    def import_functions_from_file(module_name, file_path):
        try:
            spec = importlib.util.spec_from_file_location(module_name, file_path)
            module = importlib.util.module_from_spec(spec)
            spec.loader.exec_module(module)
    
            # Extract functions from the module and make them globally accessible
            for function_name in dir(module):
                if callable(getattr(module, function_name)) and not function_name.startswith("__"):
                    globals()[function_name] = getattr(module, function_name)
    
            return module
        except FileNotFoundError:
            print(f"Error: {file_path} not found!")
            sys.exit(1)
    
    # Step 4: Import necessary functions
    import_functions_from_file("lwm_model", os.path.join(clone_dir, "lwm_model.py"))
    import_functions_from_file("inference", os.path.join(clone_dir, "inference.py"))
    import_functions_from_file("load_data", os.path.join(clone_dir, "load_data.py"))
    import_functions_from_file("input_preprocess", os.path.join(clone_dir, "input_preprocess.py"))
    print("All required functions imported successfully.")
    
  2. Load the LWM Model

    After cloning the repository, you can load the LWM model with the following code:

    # Step 5: Load the LWM model (with flexibility for the device)
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    print(f"Loading the LWM model on {device}...")
    model = LWM.from_pretrained(device=device)
    
  3. Load the DeepMIMO Dataset

    Load the DeepMIMO dataset with this code:

    # Step 6: Load dataset (direct call, no module prefix)
    print("Loading DeepMIMO dataset...")
    deepmimo_data = load_DeepMIMO_data()
    
  4. Tokenize the DeepMIMO Dataset

After loading the dataset, you can tokenize the DeepMIMO dataset based on specific scenarios. The table below lists the available scenarios, their corresponding DeepMIMO pages, and relevant details:

Scenario City Link to DeepMIMO Page
Scenario 0 Denver DeepMIMO City Scenario 18
Scenario 1 Indianapolis DeepMIMO City Scenario 15
Scenario 2 Oklahoma DeepMIMO City Scenario 19
Scenario 3 Fort Worth DeepMIMO City Scenario 12
Scenario 4 Santa Clara DeepMIMO City Scenario 11
Scenario 5 San Diego DeepMIMO City Scenario 7

Operational Settings:

  • Antennas at BS: 32
  • Antennas at UEs: 1
  • Subcarriers: 32
  • Paths: 20

Tokenization Code:

You can adjust the number of scenarios by changing the scenario_idxs. In the example below, scenario 0 and 1 are selected.

# Step 7: Tokenize the dataset
scenario_idxs = torch.arange(2)  # Adjust the number of scenarios you want
print("Tokenizing the dataset...")
preprocessed_chs = tokenizer(deepmimo_data, scenario_idxs, gen_raw=True)
  • Use the scenario_idxs variable to select specific scenarios from the DeepMIMO dataset.
  • The dataset will be tokenized according to the chosen scenarios and preprocessing configurations.

This format separates the scenarios, operational settings, and the code clearly, making it more readable. The table provides a structured overview of the available scenarios with direct links to their respective pages on DeepMIMO.

  1. LWM Inference

    Choose the type of data you want to generate from the tokenized dataset, such as cls_emb, channel_emb, or raw:

    # Step 8: Generate the dataset for inference (direct call, no module prefix)
    input_type = ['cls_emb', 'channel_emb', 'raw'][1]  # Modify input type as needed
    dataset = dataset_gen(preprocessed_chs, input_type, model)
    

Post-processing for Downstream Task

  1. Use the Dataset in Downstream Tasks

    Finally, you can use the generated raw channels and their inferred LWM embeddings in your downstream tasks:

    # Step 9: Print results
    print(f"Dataset generated with shape: {dataset.shape}")
    print("Inference completed successfully.")
    

Requirements

  • Python 3.x
  • PyTorch
  • Git