LWM: Large Wireless Model
This repository contains the implementation of LWM (Large Wireless Model), a pre-trained model for processing and extracting features from wireless communication datasets, specifically DeepMIMO. The instructions below will help you load DeepMIMO data, use the LWM model and weights, tokenize DeepMIMO scenario data, and generate either raw channels or the inferred LWM CLS or channel embeddings.
How to Use
LWM Inference
Clone the Repository
Clone the Hugging Face repository to your local machine using the following code:
import subprocess import os import sys import importlib.util import torch # Hugging Face public repository URL repo_url = "https://huggingface.co/sadjadalikhani/LWM" # Directory where the repo will be cloned clone_dir = "./LWM" # Step 1: Clone the repository if it hasn't been cloned already if not os.path.exists(clone_dir): print(f"Cloning repository from {repo_url} into {clone_dir}...") result = subprocess.run(["git", "clone", repo_url, clone_dir], capture_output=True, text=True) if result.returncode != 0: print(f"Error cloning repository: {result.stderr}") sys.exit(1) # Exit on failure print(f"Repository cloned successfully into {clone_dir}") else: print(f"Repository already cloned into {clone_dir}") # Step 2: Add the cloned directory to Python path sys.path.append(clone_dir) # Step 3: Dynamic module import and function exposure def import_functions_from_file(module_name, file_path): try: spec = importlib.util.spec_from_file_location(module_name, file_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) # Extract functions from the module and make them globally accessible for function_name in dir(module): if callable(getattr(module, function_name)) and not function_name.startswith("__"): globals()[function_name] = getattr(module, function_name) return module except FileNotFoundError: print(f"Error: {file_path} not found!") sys.exit(1) # Step 4: Import necessary functions import_functions_from_file("lwm_model", os.path.join(clone_dir, "lwm_model.py")) import_functions_from_file("inference", os.path.join(clone_dir, "inference.py")) import_functions_from_file("load_data", os.path.join(clone_dir, "load_data.py")) import_functions_from_file("input_preprocess", os.path.join(clone_dir, "input_preprocess.py")) print("All required functions imported successfully.")
Load the LWM Model
After cloning the repository, you can load the LWM model with the following code:
# Step 5: Load the LWM model (with flexibility for the device) device = 'cuda' if torch.cuda.is_available() else 'cpu' print(f"Loading the LWM model on {device}...") model = LWM.from_pretrained(device=device)
Load the DeepMIMO Dataset
Load the DeepMIMO dataset with this code:
# Step 6: Load dataset (direct call, no module prefix) print("Loading DeepMIMO dataset...") deepmimo_data = load_DeepMIMO_data()
Tokenize the DeepMIMO Dataset
After loading the dataset, you can tokenize the DeepMIMO dataset based on specific scenarios. The table below lists the available scenarios, their corresponding DeepMIMO pages, and relevant details:
Scenario | City | Link to DeepMIMO Page |
---|---|---|
Scenario 0 | Denver | DeepMIMO City Scenario 18 |
Scenario 1 | Indianapolis | DeepMIMO City Scenario 15 |
Scenario 2 | Oklahoma | DeepMIMO City Scenario 19 |
Scenario 3 | Fort Worth | DeepMIMO City Scenario 12 |
Scenario 4 | Santa Clara | DeepMIMO City Scenario 11 |
Scenario 5 | San Diego | DeepMIMO City Scenario 7 |
Operational Settings:
- Antennas at BS: 32
- Antennas at UEs: 1
- Subcarriers: 32
- Paths: 20
Tokenization Code:
You can adjust the number of scenarios by changing the scenario_idxs
. In the example below, scenario 0 and 1 are selected.
# Step 7: Tokenize the dataset
scenario_idxs = torch.arange(2) # Adjust the number of scenarios you want
print("Tokenizing the dataset...")
preprocessed_chs = tokenizer(deepmimo_data, scenario_idxs, gen_raw=True)
- Use the
scenario_idxs
variable to select specific scenarios from the DeepMIMO dataset. - The dataset will be tokenized according to the chosen scenarios and preprocessing configurations.
This format separates the scenarios, operational settings, and the code clearly, making it more readable. The table provides a structured overview of the available scenarios with direct links to their respective pages on DeepMIMO.
LWM Inference
Choose the type of data you want to generate from the tokenized dataset, such as
cls_emb
,channel_emb
, orraw
:# Step 8: Generate the dataset for inference (direct call, no module prefix) input_type = ['cls_emb', 'channel_emb', 'raw'][1] # Modify input type as needed dataset = dataset_gen(preprocessed_chs, input_type, model)
Post-processing for Downstream Task
Use the Dataset in Downstream Tasks
Finally, you can use the generated raw channels and their inferred LWM embeddings in your downstream tasks:
# Step 9: Print results print(f"Dataset generated with shape: {dataset.shape}") print("Inference completed successfully.")
Requirements
- Python 3.x
- PyTorch
- Git