File size: 6,391 Bytes
cd5c518
cd7cb8b
26fea1c
4ba6cbe
cd5c518
cd7cb8b
cd5c518
cd7cb8b
cd5c518
cd7cb8b
cd5c518
cd7cb8b
cd5c518
cd7cb8b
cd5c518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd7cb8b
cd5c518
cd7cb8b
476b019
cd7cb8b
476b019
bfaa02d
51a37d4
 
 
 
 
 
 
 
 
bfaa02d
 
 
 
 
 
 
476b019
 
bfaa02d
 
476b019
 
4ba6cbe
 
 
 
476b019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ba6cbe
476b019
 
4ba6cbe
bfaa02d
 
4ba6cbe
 
476b019
4ba6cbe
476b019
4ba6cbe
 
476b019
4ba6cbe
 
 
 
cd7cb8b
bfaa02d
 
476b019
cd5c518
4ba6cbe
cd7cb8b
cd5c518
476b019
cd5c518
 
 
cd7cb8b
cd5c518
 
 
 
cd7cb8b
cd5c518
cd7cb8b
cd5c518
12672eb
cd5c518
cd7cb8b
cd5c518
cd7cb8b
cd5c518
476b019
cd5c518
 
 
cd7cb8b
 
 
cd5c518
cd7cb8b
cd5c518
476b019
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# πŸ“‘ **LWM: Large Wireless Model**

**[πŸš€ Click here to try the Interactive Demo!](https://huggingface.co/spaces/sadjadalikhani/LWM-Interactive-Demo)**

Welcome to the **LWM** (Large Wireless Model) repository! This project hosts a pre-trained model designed to process and extract features from wireless communication datasets, specifically the **DeepMIMO** dataset. Follow the instructions below to clone the repository, load the data, and perform inference with LWM.

---

## πŸ›  **How to Use**

### 1. **Clone the Repository**

To get started, clone the Hugging Face repository to your local machine with the following Python code:

```python
import subprocess
import os
import sys
import importlib.util
import torch

# Hugging Face public repository URL
repo_url = "https://huggingface.co/sadjadalikhani/LWM"

# Directory where the repo will be cloned
clone_dir = "./LWM"

# Step 1: Clone the repository if it hasn't been cloned already
if not os.path.exists(clone_dir):
    print(f"Cloning repository from {repo_url} into {clone_dir}...")
    result = subprocess.run(["git", "clone", repo_url, clone_dir], capture_output=True, text=True)

    if result.returncode != 0:
        print(f"Error cloning repository: {result.stderr}")
        sys.exit(1)
    print(f"Repository cloned successfully into {clone_dir}")
else:
    print(f"Repository already cloned into {clone_dir}")

# Step 2: Add the cloned directory to Python path
sys.path.append(clone_dir)

# Step 3: Import necessary functions
def import_functions_from_file(module_name, file_path):
    try:
        spec = importlib.util.spec_from_file_location(module_name, file_path)
        module = importlib.util.module_from_spec(spec)
        spec.loader.exec_module(module)

        for function_name in dir(module):
            if callable(getattr(module, function_name)) and not function_name.startswith("__"):
                globals()[function_name] = getattr(module, function_name)
        return module
    except FileNotFoundError:
        print(f"Error: {file_path} not found!")
        sys.exit(1)

# Step 4: Import functions from the repository
import_functions_from_file("lwm_model", os.path.join(clone_dir, "lwm_model.py"))
import_functions_from_file("inference", os.path.join(clone_dir, "inference.py"))
import_functions_from_file("load_data", os.path.join(clone_dir, "load_data.py"))
import_functions_from_file("input_preprocess", os.path.join(clone_dir, "input_preprocess.py"))
print("All required functions imported successfully.")
```

---

### 2. **Load the DeepMIMO Dataset**

Before tokenizing and processing the data, you need to load the **DeepMIMO** dataset. Below is a list of available datasets and their links for more information:

| **Dataset**  | **City**      | **Number of Users** | **Link to DeepMIMO Page**                                                                                     |
|--------------|---------------|---------------------|----------------------------------------------------------------------------------------------------------------|
| Dataset 0    | Denver        | 1354                 | [DeepMIMO City Scenario 18](https://www.deepmimo.net/scenarios/deepmimo-city-scenario18/)                      |
| Dataset 1    | Indianapolis  | 3248                 | [DeepMIMO City Scenario 15](https://www.deepmimo.net/scenarios/deepmimo-city-scenario15/)                      |
| Dataset 2    | Oklahoma      | 3455                 | [DeepMIMO City Scenario 19](https://www.deepmimo.net/scenarios/deepmimo-city-scenario19/)                      |
| Dataset 3    | Fort Worth    | 1902                 | [DeepMIMO City Scenario 12](https://www.deepmimo.net/scenarios/deepmimo-city-scenario12/)                      |
| Dataset 4    | Santa Clara   | 2689                 | [DeepMIMO City Scenario 11](https://www.deepmimo.net/scenarios/deepmimo-city-scenario11/)                      |
| Dataset 5    | San Diego     | 2192                 | [DeepMIMO City Scenario 7](https://www.deepmimo.net/scenarios/deepmimo-city-scenario7/)                        |
                 |

#### **Operational Settings**:
- **Antennas at BS**: 32
- **Antennas at UEs**: 1
- **Subcarriers**: 32
- **Paths**: 20

#### **Load Data Code**:
Select and load specific datasets by adjusting the `dataset_idxs`. In the example below, we select the first two datasets.

```python
# Step 5: Load the DeepMIMO dataset
print("Loading the DeepMIMO dataset...")

# Load the DeepMIMO dataset
deepmimo_data = load_DeepMIMO_data()

# Select datasets to load
dataset_idxs = torch.arange(2)  # Adjust the number of datasets as needed
print("DeepMIMO dataset loaded successfully.")
```

---

### 3. **Tokenize the DeepMIMO Dataset**

After loading the data, tokenize the selected **DeepMIMO** datasets. This step prepares the data for the model to process.

#### **Tokenization Code**:

```python
# Step 6: Tokenize the dataset
print("Tokenizing the DeepMIMO dataset...")

# Tokenize the loaded datasets
preprocessed_chs = tokenizer(deepmimo_data, dataset_idxs, gen_raw=True)
print("Dataset tokenized successfully.")
```

---

### 4. **Load the LWM Model**

Once the dataset is tokenized, load the pre-trained **LWM** model using the following code:

```python
# Step 7: Load the LWM model (with flexibility for the device)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Loading the LWM model on {device}...")
model = LWM.from_pretrained(device=device)
```

---

### 5. **LWM Inference**

Once the dataset is tokenized and the model is loaded, generate either **raw channels** or the **inferred LWM embeddings** by choosing the input type.

```python
# Step 8: Generate the dataset for inference
input_type = ['cls_emb', 'channel_emb', 'raw'][1]  # Modify input type as needed
dataset = dataset_gen(preprocessed_chs, input_type, model)
```

You can choose between:
- `cls_emb`: LWM CLS token embeddings
- `channel_emb`: LWM channel embeddings
- `raw`: Raw wireless channel data

---

## πŸ”„ **Post-processing for Downstream Task**

### 1. **Use the Dataset in Downstream Tasks**

Finally, use the generated dataset for your downstream tasks, such as classification, prediction, or analysis.

```python
# Step 9: Print results
print(f"Dataset generated with shape: {dataset.shape}")
print("Inference completed successfully.")
```

---

## πŸ“‹ **Requirements**

- **Python 3.x**
- **PyTorch**