File size: 6,391 Bytes
cd5c518 cd7cb8b 26fea1c 4ba6cbe cd5c518 cd7cb8b cd5c518 cd7cb8b cd5c518 cd7cb8b cd5c518 cd7cb8b cd5c518 cd7cb8b cd5c518 cd7cb8b cd5c518 cd7cb8b 476b019 cd7cb8b 476b019 bfaa02d 51a37d4 bfaa02d 476b019 bfaa02d 476b019 4ba6cbe 476b019 4ba6cbe 476b019 4ba6cbe bfaa02d 4ba6cbe 476b019 4ba6cbe 476b019 4ba6cbe 476b019 4ba6cbe cd7cb8b bfaa02d 476b019 cd5c518 4ba6cbe cd7cb8b cd5c518 476b019 cd5c518 cd7cb8b cd5c518 cd7cb8b cd5c518 cd7cb8b cd5c518 12672eb cd5c518 cd7cb8b cd5c518 cd7cb8b cd5c518 476b019 cd5c518 cd7cb8b cd5c518 cd7cb8b cd5c518 476b019 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
# π‘ **LWM: Large Wireless Model**
**[π Click here to try the Interactive Demo!](https://huggingface.co/spaces/sadjadalikhani/LWM-Interactive-Demo)**
Welcome to the **LWM** (Large Wireless Model) repository! This project hosts a pre-trained model designed to process and extract features from wireless communication datasets, specifically the **DeepMIMO** dataset. Follow the instructions below to clone the repository, load the data, and perform inference with LWM.
---
## π **How to Use**
### 1. **Clone the Repository**
To get started, clone the Hugging Face repository to your local machine with the following Python code:
```python
import subprocess
import os
import sys
import importlib.util
import torch
# Hugging Face public repository URL
repo_url = "https://huggingface.co/sadjadalikhani/LWM"
# Directory where the repo will be cloned
clone_dir = "./LWM"
# Step 1: Clone the repository if it hasn't been cloned already
if not os.path.exists(clone_dir):
print(f"Cloning repository from {repo_url} into {clone_dir}...")
result = subprocess.run(["git", "clone", repo_url, clone_dir], capture_output=True, text=True)
if result.returncode != 0:
print(f"Error cloning repository: {result.stderr}")
sys.exit(1)
print(f"Repository cloned successfully into {clone_dir}")
else:
print(f"Repository already cloned into {clone_dir}")
# Step 2: Add the cloned directory to Python path
sys.path.append(clone_dir)
# Step 3: Import necessary functions
def import_functions_from_file(module_name, file_path):
try:
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
for function_name in dir(module):
if callable(getattr(module, function_name)) and not function_name.startswith("__"):
globals()[function_name] = getattr(module, function_name)
return module
except FileNotFoundError:
print(f"Error: {file_path} not found!")
sys.exit(1)
# Step 4: Import functions from the repository
import_functions_from_file("lwm_model", os.path.join(clone_dir, "lwm_model.py"))
import_functions_from_file("inference", os.path.join(clone_dir, "inference.py"))
import_functions_from_file("load_data", os.path.join(clone_dir, "load_data.py"))
import_functions_from_file("input_preprocess", os.path.join(clone_dir, "input_preprocess.py"))
print("All required functions imported successfully.")
```
---
### 2. **Load the DeepMIMO Dataset**
Before tokenizing and processing the data, you need to load the **DeepMIMO** dataset. Below is a list of available datasets and their links for more information:
| **Dataset** | **City** | **Number of Users** | **Link to DeepMIMO Page** |
|--------------|---------------|---------------------|----------------------------------------------------------------------------------------------------------------|
| Dataset 0 | Denver | 1354 | [DeepMIMO City Scenario 18](https://www.deepmimo.net/scenarios/deepmimo-city-scenario18/) |
| Dataset 1 | Indianapolis | 3248 | [DeepMIMO City Scenario 15](https://www.deepmimo.net/scenarios/deepmimo-city-scenario15/) |
| Dataset 2 | Oklahoma | 3455 | [DeepMIMO City Scenario 19](https://www.deepmimo.net/scenarios/deepmimo-city-scenario19/) |
| Dataset 3 | Fort Worth | 1902 | [DeepMIMO City Scenario 12](https://www.deepmimo.net/scenarios/deepmimo-city-scenario12/) |
| Dataset 4 | Santa Clara | 2689 | [DeepMIMO City Scenario 11](https://www.deepmimo.net/scenarios/deepmimo-city-scenario11/) |
| Dataset 5 | San Diego | 2192 | [DeepMIMO City Scenario 7](https://www.deepmimo.net/scenarios/deepmimo-city-scenario7/) |
|
#### **Operational Settings**:
- **Antennas at BS**: 32
- **Antennas at UEs**: 1
- **Subcarriers**: 32
- **Paths**: 20
#### **Load Data Code**:
Select and load specific datasets by adjusting the `dataset_idxs`. In the example below, we select the first two datasets.
```python
# Step 5: Load the DeepMIMO dataset
print("Loading the DeepMIMO dataset...")
# Load the DeepMIMO dataset
deepmimo_data = load_DeepMIMO_data()
# Select datasets to load
dataset_idxs = torch.arange(2) # Adjust the number of datasets as needed
print("DeepMIMO dataset loaded successfully.")
```
---
### 3. **Tokenize the DeepMIMO Dataset**
After loading the data, tokenize the selected **DeepMIMO** datasets. This step prepares the data for the model to process.
#### **Tokenization Code**:
```python
# Step 6: Tokenize the dataset
print("Tokenizing the DeepMIMO dataset...")
# Tokenize the loaded datasets
preprocessed_chs = tokenizer(deepmimo_data, dataset_idxs, gen_raw=True)
print("Dataset tokenized successfully.")
```
---
### 4. **Load the LWM Model**
Once the dataset is tokenized, load the pre-trained **LWM** model using the following code:
```python
# Step 7: Load the LWM model (with flexibility for the device)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Loading the LWM model on {device}...")
model = LWM.from_pretrained(device=device)
```
---
### 5. **LWM Inference**
Once the dataset is tokenized and the model is loaded, generate either **raw channels** or the **inferred LWM embeddings** by choosing the input type.
```python
# Step 8: Generate the dataset for inference
input_type = ['cls_emb', 'channel_emb', 'raw'][1] # Modify input type as needed
dataset = dataset_gen(preprocessed_chs, input_type, model)
```
You can choose between:
- `cls_emb`: LWM CLS token embeddings
- `channel_emb`: LWM channel embeddings
- `raw`: Raw wireless channel data
---
## π **Post-processing for Downstream Task**
### 1. **Use the Dataset in Downstream Tasks**
Finally, use the generated dataset for your downstream tasks, such as classification, prediction, or analysis.
```python
# Step 9: Print results
print(f"Dataset generated with shape: {dataset.shape}")
print("Inference completed successfully.")
```
---
## π **Requirements**
- **Python 3.x**
- **PyTorch** |