valadhi's picture
update model card README.md
c05a4a6
|
raw
history blame
3.63 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-agrivision
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9362186788154897

swin-tiny-patch4-window7-224-finetuned-agrivision

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2783
  • Accuracy: 0.9362

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5829 1.0 31 0.7480 0.7267
0.1199 2.0 62 0.4407 0.8246
0.1028 3.0 93 0.4477 0.8246
0.0533 4.0 124 0.4606 0.8292
0.0411 5.0 155 0.2470 0.9180
0.022 6.0 186 0.1568 0.9544
0.0206 7.0 217 0.4187 0.8793
0.0069 8.0 248 0.2498 0.9203
0.0053 9.0 279 0.2654 0.9226
0.0094 10.0 310 0.2343 0.9385
0.0152 11.0 341 0.3421 0.9021
0.0047 12.0 372 0.4494 0.8724
0.0128 13.0 403 0.5360 0.8679
0.0024 14.0 434 0.2775 0.9112
0.0127 15.0 465 0.2911 0.8975
0.0038 16.0 496 0.2337 0.9294
0.0001 17.0 527 0.2207 0.9408
0.0054 18.0 558 0.2506 0.9362
0.0011 19.0 589 0.3778 0.8952
0.0002 20.0 620 0.2316 0.9408
0.0003 21.0 651 0.2133 0.9431
0.0009 22.0 682 0.2519 0.9339
0.0004 23.0 713 0.2931 0.9203
0.0001 24.0 744 0.2847 0.9271
0.0003 25.0 775 0.2831 0.9317
0.0008 26.0 806 0.2919 0.9271
0.0003 27.0 837 0.2798 0.9362
0.0008 28.0 868 0.2857 0.9362
0.0008 29.0 899 0.2780 0.9362
0.0013 30.0 930 0.2783 0.9362

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.12.1
  • Datasets 2.4.0
  • Tokenizers 0.12.1