metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-agrivision
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9362186788154897
swin-tiny-patch4-window7-224-finetuned-agrivision
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2783
- Accuracy: 0.9362
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5829 | 1.0 | 31 | 0.7480 | 0.7267 |
0.1199 | 2.0 | 62 | 0.4407 | 0.8246 |
0.1028 | 3.0 | 93 | 0.4477 | 0.8246 |
0.0533 | 4.0 | 124 | 0.4606 | 0.8292 |
0.0411 | 5.0 | 155 | 0.2470 | 0.9180 |
0.022 | 6.0 | 186 | 0.1568 | 0.9544 |
0.0206 | 7.0 | 217 | 0.4187 | 0.8793 |
0.0069 | 8.0 | 248 | 0.2498 | 0.9203 |
0.0053 | 9.0 | 279 | 0.2654 | 0.9226 |
0.0094 | 10.0 | 310 | 0.2343 | 0.9385 |
0.0152 | 11.0 | 341 | 0.3421 | 0.9021 |
0.0047 | 12.0 | 372 | 0.4494 | 0.8724 |
0.0128 | 13.0 | 403 | 0.5360 | 0.8679 |
0.0024 | 14.0 | 434 | 0.2775 | 0.9112 |
0.0127 | 15.0 | 465 | 0.2911 | 0.8975 |
0.0038 | 16.0 | 496 | 0.2337 | 0.9294 |
0.0001 | 17.0 | 527 | 0.2207 | 0.9408 |
0.0054 | 18.0 | 558 | 0.2506 | 0.9362 |
0.0011 | 19.0 | 589 | 0.3778 | 0.8952 |
0.0002 | 20.0 | 620 | 0.2316 | 0.9408 |
0.0003 | 21.0 | 651 | 0.2133 | 0.9431 |
0.0009 | 22.0 | 682 | 0.2519 | 0.9339 |
0.0004 | 23.0 | 713 | 0.2931 | 0.9203 |
0.0001 | 24.0 | 744 | 0.2847 | 0.9271 |
0.0003 | 25.0 | 775 | 0.2831 | 0.9317 |
0.0008 | 26.0 | 806 | 0.2919 | 0.9271 |
0.0003 | 27.0 | 837 | 0.2798 | 0.9362 |
0.0008 | 28.0 | 868 | 0.2857 | 0.9362 |
0.0008 | 29.0 | 899 | 0.2780 | 0.9362 |
0.0013 | 30.0 | 930 | 0.2783 | 0.9362 |
Framework versions
- Transformers 4.21.1
- Pytorch 1.12.1
- Datasets 2.4.0
- Tokenizers 0.12.1