swin-tiny-patch4-window7-224-finetuned-agrivision

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3605
  • Accuracy: 0.9203

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5913 1.0 31 0.7046 0.7175
0.1409 2.0 62 0.8423 0.6788
0.0825 3.0 93 0.6224 0.7654
0.0509 4.0 124 0.4379 0.8360
0.0439 5.0 155 0.1706 0.9317
0.0107 6.0 186 0.1914 0.9362
0.0134 7.0 217 0.2491 0.9089
0.0338 8.0 248 0.2119 0.9362
0.0306 9.0 279 0.4502 0.8610
0.0054 10.0 310 0.4990 0.8747
0.0033 11.0 341 0.2746 0.9112
0.0021 12.0 372 0.2501 0.9317
0.0068 13.0 403 0.1883 0.9522
0.0038 14.0 434 0.3672 0.9134
0.0006 15.0 465 0.2275 0.9408
0.0011 16.0 496 0.3349 0.9134
0.0017 17.0 527 0.3329 0.9157
0.0007 18.0 558 0.2508 0.9317
0.0023 19.0 589 0.2338 0.9385
0.0003 20.0 620 0.3193 0.9226
0.002 21.0 651 0.4604 0.9043
0.0023 22.0 682 0.3338 0.9203
0.005 23.0 713 0.2925 0.9271
0.0001 24.0 744 0.2022 0.9522
0.0002 25.0 775 0.2699 0.9339
0.0007 26.0 806 0.2603 0.9385
0.0005 27.0 837 0.4120 0.9134
0.0003 28.0 868 0.3550 0.9203
0.0008 29.0 899 0.3657 0.9203
0.0 30.0 930 0.3605 0.9203

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.12.1
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
94
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results