metadata
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
datasets:
- tyzhu/lmind_nq_train6000_eval6489_v1_qa
metrics:
- accuracy
model-index:
- name: lmind_nq_train6000_eval6489_v1_qa_5e-5_lora2
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: tyzhu/lmind_nq_train6000_eval6489_v1_qa
type: tyzhu/lmind_nq_train6000_eval6489_v1_qa
metrics:
- name: Accuracy
type: accuracy
value: 0.597948717948718
lmind_nq_train6000_eval6489_v1_qa_5e-5_lora2
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_qa dataset. It achieves the following results on the evaluation set:
- Loss: 2.3327
- Accuracy: 0.5979
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
1.7923 | 1.0 | 187 | 0.6128 | 1.2805 |
1.2488 | 2.0 | 375 | 0.6168 | 1.2677 |
1.1097 | 3.0 | 562 | 0.6162 | 1.2943 |
0.9244 | 4.0 | 750 | 0.6126 | 1.3598 |
0.7924 | 5.0 | 937 | 0.6089 | 1.4714 |
0.6864 | 6.0 | 1125 | 0.6045 | 1.5761 |
0.6101 | 7.0 | 1312 | 0.6029 | 1.6554 |
0.562 | 8.0 | 1500 | 0.6011 | 1.7485 |
0.5015 | 9.0 | 1687 | 0.5998 | 1.8067 |
0.4855 | 10.0 | 1875 | 0.5996 | 1.8643 |
0.4736 | 11.0 | 2062 | 0.5966 | 1.9771 |
0.465 | 12.0 | 2250 | 0.5989 | 1.9610 |
0.4603 | 13.0 | 2437 | 0.5982 | 1.9498 |
0.4537 | 14.0 | 2625 | 0.5979 | 2.0510 |
0.4489 | 15.0 | 2812 | 0.5996 | 2.0862 |
0.4488 | 16.0 | 3000 | 0.5995 | 2.0370 |
0.4238 | 17.0 | 3187 | 0.5990 | 2.0638 |
0.4245 | 18.0 | 3375 | 0.6001 | 2.0635 |
0.4241 | 19.0 | 3562 | 0.5988 | 2.1451 |
0.4236 | 20.0 | 3750 | 0.6003 | 2.1509 |
0.4241 | 21.0 | 3937 | 0.5987 | 2.1745 |
0.4239 | 22.0 | 4125 | 0.5991 | 2.1752 |
0.4245 | 23.0 | 4312 | 0.5983 | 2.1659 |
0.4229 | 24.0 | 4500 | 0.5981 | 2.2126 |
0.4059 | 25.0 | 4687 | 0.5997 | 2.1568 |
0.4064 | 26.0 | 4875 | 0.5979 | 2.1777 |
0.4089 | 27.0 | 5062 | 0.5979 | 2.2200 |
0.4099 | 28.0 | 5250 | 0.5976 | 2.2412 |
0.4103 | 29.0 | 5437 | 0.5983 | 2.2093 |
0.4112 | 30.0 | 5625 | 0.6002 | 2.2145 |
0.4113 | 31.0 | 5812 | 0.5990 | 2.2514 |
0.4124 | 32.0 | 6000 | 0.5979 | 2.3170 |
0.3961 | 33.0 | 6187 | 0.5978 | 2.2557 |
0.4002 | 34.0 | 6375 | 0.5979 | 2.2739 |
0.3998 | 35.0 | 6562 | 0.5976 | 2.2498 |
0.4022 | 36.0 | 6750 | 0.5972 | 2.3118 |
0.4038 | 37.0 | 6937 | 0.5970 | 2.3259 |
0.404 | 38.0 | 7125 | 0.5973 | 2.3276 |
0.4072 | 39.0 | 7312 | 0.5994 | 2.2854 |
0.4077 | 40.0 | 7500 | 0.5982 | 2.3036 |
0.3943 | 41.0 | 7687 | 0.5987 | 2.3361 |
0.3939 | 42.0 | 7875 | 0.5995 | 2.2148 |
0.3977 | 43.0 | 8062 | 0.5985 | 2.3393 |
0.3988 | 44.0 | 8250 | 0.5983 | 2.2875 |
0.402 | 45.0 | 8437 | 0.5995 | 2.2981 |
0.4002 | 46.0 | 8625 | 0.5981 | 2.3163 |
0.4004 | 47.0 | 8812 | 0.5987 | 2.3085 |
0.402 | 48.0 | 9000 | 0.5977 | 2.3341 |
0.3895 | 49.0 | 9187 | 0.5984 | 2.2953 |
0.3927 | 49.87 | 9350 | 0.5979 | 2.3327 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1