lmind_nq_train6000_eval6489_v1_qa_5e-5_lora2

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_qa dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3327
  • Accuracy: 0.5979

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 50.0

Training results

Training Loss Epoch Step Accuracy Validation Loss
1.7923 1.0 187 0.6128 1.2805
1.2488 2.0 375 0.6168 1.2677
1.1097 3.0 562 0.6162 1.2943
0.9244 4.0 750 0.6126 1.3598
0.7924 5.0 937 0.6089 1.4714
0.6864 6.0 1125 0.6045 1.5761
0.6101 7.0 1312 0.6029 1.6554
0.562 8.0 1500 0.6011 1.7485
0.5015 9.0 1687 0.5998 1.8067
0.4855 10.0 1875 0.5996 1.8643
0.4736 11.0 2062 0.5966 1.9771
0.465 12.0 2250 0.5989 1.9610
0.4603 13.0 2437 0.5982 1.9498
0.4537 14.0 2625 0.5979 2.0510
0.4489 15.0 2812 0.5996 2.0862
0.4488 16.0 3000 0.5995 2.0370
0.4238 17.0 3187 0.5990 2.0638
0.4245 18.0 3375 0.6001 2.0635
0.4241 19.0 3562 0.5988 2.1451
0.4236 20.0 3750 0.6003 2.1509
0.4241 21.0 3937 0.5987 2.1745
0.4239 22.0 4125 0.5991 2.1752
0.4245 23.0 4312 0.5983 2.1659
0.4229 24.0 4500 0.5981 2.2126
0.4059 25.0 4687 0.5997 2.1568
0.4064 26.0 4875 0.5979 2.1777
0.4089 27.0 5062 0.5979 2.2200
0.4099 28.0 5250 0.5976 2.2412
0.4103 29.0 5437 0.5983 2.2093
0.4112 30.0 5625 0.6002 2.2145
0.4113 31.0 5812 0.5990 2.2514
0.4124 32.0 6000 0.5979 2.3170
0.3961 33.0 6187 0.5978 2.2557
0.4002 34.0 6375 0.5979 2.2739
0.3998 35.0 6562 0.5976 2.2498
0.4022 36.0 6750 0.5972 2.3118
0.4038 37.0 6937 0.5970 2.3259
0.404 38.0 7125 0.5973 2.3276
0.4072 39.0 7312 0.5994 2.2854
0.4077 40.0 7500 0.5982 2.3036
0.3943 41.0 7687 0.5987 2.3361
0.3939 42.0 7875 0.5995 2.2148
0.3977 43.0 8062 0.5985 2.3393
0.3988 44.0 8250 0.5983 2.2875
0.402 45.0 8437 0.5995 2.2981
0.4002 46.0 8625 0.5981 2.3163
0.4004 47.0 8812 0.5987 2.3085
0.402 48.0 9000 0.5977 2.3341
0.3895 49.0 9187 0.5984 2.2953
0.3927 49.87 9350 0.5979 2.3327

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_qa_5e-5_lora2

Finetuned
(619)
this model

Dataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_qa_5e-5_lora2

Evaluation results

  • Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_qa
    self-reported
    0.598