metadata
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
datasets:
- tyzhu/lmind_nq_train6000_eval6489_v1_qa
metrics:
- accuracy
model-index:
- name: lmind_nq_train6000_eval6489_v1_qa_1e-4_lora2
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: tyzhu/lmind_nq_train6000_eval6489_v1_qa
type: tyzhu/lmind_nq_train6000_eval6489_v1_qa
metrics:
- name: Accuracy
type: accuracy
value: 0.6010769230769231
lmind_nq_train6000_eval6489_v1_qa_1e-4_lora2
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_qa dataset. It achieves the following results on the evaluation set:
- Loss: 2.0414
- Accuracy: 0.6011
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
1.598 | 1.0 | 187 | 0.6147 | 1.2692 |
1.1923 | 2.0 | 375 | 0.6176 | 1.2733 |
0.9732 | 3.0 | 562 | 0.6136 | 1.3396 |
0.7763 | 4.0 | 750 | 0.6104 | 1.4358 |
0.6498 | 5.0 | 937 | 0.6052 | 1.5630 |
0.57 | 6.0 | 1125 | 0.6031 | 1.6599 |
0.5253 | 7.0 | 1312 | 0.6027 | 1.7480 |
0.4958 | 8.0 | 1500 | 0.6021 | 1.8060 |
0.4521 | 9.0 | 1687 | 0.6013 | 1.8599 |
0.443 | 10.0 | 1875 | 0.6013 | 1.9468 |
0.439 | 11.0 | 2062 | 0.6015 | 1.9500 |
0.433 | 12.0 | 2250 | 0.6021 | 1.9104 |
0.4323 | 13.0 | 2437 | 0.6001 | 2.0079 |
0.4281 | 14.0 | 2625 | 0.6008 | 1.9881 |
0.4277 | 15.0 | 2812 | 0.6005 | 2.0305 |
0.4298 | 16.0 | 3000 | 0.6005 | 2.0478 |
0.4082 | 17.0 | 3187 | 0.6007 | 2.0539 |
0.411 | 18.0 | 3375 | 0.6005 | 2.0314 |
0.4113 | 19.0 | 3562 | 0.6011 | 2.0368 |
0.4121 | 20.0 | 3750 | 0.6017 | 2.1022 |
0.414 | 21.0 | 3937 | 0.6007 | 2.0512 |
0.4163 | 22.0 | 4125 | 0.6016 | 2.1147 |
0.4172 | 23.0 | 4312 | 0.6007 | 2.0942 |
0.4156 | 24.0 | 4500 | 0.6008 | 2.1201 |
0.3997 | 25.0 | 4687 | 0.6010 | 2.0660 |
0.3994 | 26.0 | 4875 | 0.6006 | 2.0832 |
0.4032 | 27.0 | 5062 | 0.6003 | 2.1423 |
0.4058 | 28.0 | 5250 | 0.6015 | 2.1000 |
0.4065 | 29.0 | 5437 | 0.6009 | 2.1065 |
0.4068 | 30.0 | 5625 | 0.6006 | 2.1389 |
0.4091 | 31.0 | 5812 | 0.6005 | 2.1241 |
0.4103 | 32.0 | 6000 | 0.6010 | 2.1241 |
0.3959 | 33.0 | 6187 | 0.6021 | 2.1206 |
0.3974 | 34.0 | 6375 | 0.6017 | 2.1061 |
0.3983 | 35.0 | 6562 | 0.6013 | 2.1041 |
0.4034 | 36.0 | 6750 | 0.6017 | 2.0843 |
0.4035 | 37.0 | 6937 | 0.6035 | 2.0837 |
0.4013 | 38.0 | 7125 | 0.6015 | 2.1708 |
0.4063 | 39.0 | 7312 | 0.602 | 2.0946 |
0.4049 | 40.0 | 7500 | 0.6019 | 2.1671 |
0.391 | 41.0 | 7687 | 0.6026 | 2.1508 |
0.3913 | 42.0 | 7875 | 0.5998 | 2.2062 |
0.3945 | 43.0 | 8062 | 0.6012 | 2.2214 |
0.3953 | 44.0 | 8250 | 0.6005 | 2.2576 |
0.3959 | 45.0 | 8437 | 0.6001 | 2.2755 |
0.3961 | 46.0 | 8625 | 0.6014 | 2.3085 |
0.3982 | 47.0 | 8812 | 0.5992 | 2.3093 |
0.4028 | 48.0 | 9000 | 0.6007 | 2.1926 |
0.3915 | 49.0 | 9187 | 0.6018 | 2.0674 |
0.4009 | 49.87 | 9350 | 0.6011 | 2.0414 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1