--- license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer datasets: - tyzhu/lmind_nq_train6000_eval6489_v1_qa metrics: - accuracy model-index: - name: lmind_nq_train6000_eval6489_v1_qa_1e-4_lora2 results: - task: name: Causal Language Modeling type: text-generation dataset: name: tyzhu/lmind_nq_train6000_eval6489_v1_qa type: tyzhu/lmind_nq_train6000_eval6489_v1_qa metrics: - name: Accuracy type: accuracy value: 0.6010769230769231 --- # lmind_nq_train6000_eval6489_v1_qa_1e-4_lora2 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the tyzhu/lmind_nq_train6000_eval6489_v1_qa dataset. It achieves the following results on the evaluation set: - Loss: 2.0414 - Accuracy: 0.6011 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 50.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 1.598 | 1.0 | 187 | 0.6147 | 1.2692 | | 1.1923 | 2.0 | 375 | 0.6176 | 1.2733 | | 0.9732 | 3.0 | 562 | 0.6136 | 1.3396 | | 0.7763 | 4.0 | 750 | 0.6104 | 1.4358 | | 0.6498 | 5.0 | 937 | 0.6052 | 1.5630 | | 0.57 | 6.0 | 1125 | 0.6031 | 1.6599 | | 0.5253 | 7.0 | 1312 | 0.6027 | 1.7480 | | 0.4958 | 8.0 | 1500 | 0.6021 | 1.8060 | | 0.4521 | 9.0 | 1687 | 0.6013 | 1.8599 | | 0.443 | 10.0 | 1875 | 0.6013 | 1.9468 | | 0.439 | 11.0 | 2062 | 0.6015 | 1.9500 | | 0.433 | 12.0 | 2250 | 0.6021 | 1.9104 | | 0.4323 | 13.0 | 2437 | 0.6001 | 2.0079 | | 0.4281 | 14.0 | 2625 | 0.6008 | 1.9881 | | 0.4277 | 15.0 | 2812 | 0.6005 | 2.0305 | | 0.4298 | 16.0 | 3000 | 0.6005 | 2.0478 | | 0.4082 | 17.0 | 3187 | 0.6007 | 2.0539 | | 0.411 | 18.0 | 3375 | 0.6005 | 2.0314 | | 0.4113 | 19.0 | 3562 | 0.6011 | 2.0368 | | 0.4121 | 20.0 | 3750 | 0.6017 | 2.1022 | | 0.414 | 21.0 | 3937 | 0.6007 | 2.0512 | | 0.4163 | 22.0 | 4125 | 0.6016 | 2.1147 | | 0.4172 | 23.0 | 4312 | 0.6007 | 2.0942 | | 0.4156 | 24.0 | 4500 | 0.6008 | 2.1201 | | 0.3997 | 25.0 | 4687 | 0.6010 | 2.0660 | | 0.3994 | 26.0 | 4875 | 0.6006 | 2.0832 | | 0.4032 | 27.0 | 5062 | 0.6003 | 2.1423 | | 0.4058 | 28.0 | 5250 | 0.6015 | 2.1000 | | 0.4065 | 29.0 | 5437 | 0.6009 | 2.1065 | | 0.4068 | 30.0 | 5625 | 0.6006 | 2.1389 | | 0.4091 | 31.0 | 5812 | 0.6005 | 2.1241 | | 0.4103 | 32.0 | 6000 | 0.6010 | 2.1241 | | 0.3959 | 33.0 | 6187 | 0.6021 | 2.1206 | | 0.3974 | 34.0 | 6375 | 0.6017 | 2.1061 | | 0.3983 | 35.0 | 6562 | 0.6013 | 2.1041 | | 0.4034 | 36.0 | 6750 | 0.6017 | 2.0843 | | 0.4035 | 37.0 | 6937 | 0.6035 | 2.0837 | | 0.4013 | 38.0 | 7125 | 0.6015 | 2.1708 | | 0.4063 | 39.0 | 7312 | 0.602 | 2.0946 | | 0.4049 | 40.0 | 7500 | 0.6019 | 2.1671 | | 0.391 | 41.0 | 7687 | 0.6026 | 2.1508 | | 0.3913 | 42.0 | 7875 | 0.5998 | 2.2062 | | 0.3945 | 43.0 | 8062 | 0.6012 | 2.2214 | | 0.3953 | 44.0 | 8250 | 0.6005 | 2.2576 | | 0.3959 | 45.0 | 8437 | 0.6001 | 2.2755 | | 0.3961 | 46.0 | 8625 | 0.6014 | 2.3085 | | 0.3982 | 47.0 | 8812 | 0.5992 | 2.3093 | | 0.4028 | 48.0 | 9000 | 0.6007 | 2.1926 | | 0.3915 | 49.0 | 9187 | 0.6018 | 2.0674 | | 0.4009 | 49.87 | 9350 | 0.6011 | 2.0414 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.14.1