tyzhu's picture
Model save
5daff9a verified
|
raw
history blame
2.21 kB
metadata
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: lmind_hotpot_train8000_eval7405_v1_qa_meta-llama_Llama-2-7b-hf_lora2
    results: []

lmind_hotpot_train8000_eval7405_v1_qa_meta-llama_Llama-2-7b-hf_lora2

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8216
  • Accuracy: 0.5903

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Accuracy Validation Loss
1.7795 1.0 250 0.6075 1.8062
1.6437 2.0 500 1.8114 0.6077
1.4652 3.0 750 1.8675 0.6061
1.2631 4.0 1000 1.9843 0.6030
1.0724 5.0 1250 2.0921 0.6001
0.8917 6.0 1500 2.2463 0.5973
0.7235 7.0 1750 2.4073 0.5943
0.5997 8.0 2000 2.5738 0.5931
0.4943 9.0 2250 2.6983 0.5905
0.4381 10.0 2500 2.8216 0.5903

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.14.1