--- license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer metrics: - accuracy model-index: - name: lmind_hotpot_train8000_eval7405_v1_qa_meta-llama_Llama-2-7b-hf_lora2 results: [] --- # lmind_hotpot_train8000_eval7405_v1_qa_meta-llama_Llama-2-7b-hf_lora2 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8216 - Accuracy: 0.5903 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 1.7795 | 1.0 | 250 | 0.6075 | 1.8062 | | 1.6437 | 2.0 | 500 | 1.8114 | 0.6077 | | 1.4652 | 3.0 | 750 | 1.8675 | 0.6061 | | 1.2631 | 4.0 | 1000 | 1.9843 | 0.6030 | | 1.0724 | 5.0 | 1250 | 2.0921 | 0.6001 | | 0.8917 | 6.0 | 1500 | 2.2463 | 0.5973 | | 0.7235 | 7.0 | 1750 | 2.4073 | 0.5943 | | 0.5997 | 8.0 | 2000 | 2.5738 | 0.5931 | | 0.4943 | 9.0 | 2250 | 2.6983 | 0.5905 | | 0.4381 | 10.0 | 2500 | 2.8216 | 0.5903 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.14.1