metadata
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
datasets:
- tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
metrics:
- accuracy
model-index:
- name: lmind_hotpot_train8000_eval7405_v1_qa_3e-5_lora2
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
type: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
metrics:
- name: Accuracy
type: accuracy
value: 0.5822278481012658
lmind_hotpot_train8000_eval7405_v1_qa_3e-5_lora2
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_hotpot_train8000_eval7405_v1_qa dataset. It achieves the following results on the evaluation set:
- Loss: 3.7015
- Accuracy: 0.5822
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
1.8255 | 1.0 | 250 | 0.6054 | 1.8392 |
1.7368 | 2.0 | 500 | 0.6078 | 1.8111 |
1.6689 | 3.0 | 750 | 0.6075 | 1.8103 |
1.5555 | 4.0 | 1000 | 0.6067 | 1.8414 |
1.4559 | 5.0 | 1250 | 0.6038 | 1.8992 |
1.3514 | 6.0 | 1500 | 0.6018 | 1.9584 |
1.2491 | 7.0 | 1750 | 0.6000 | 2.0300 |
1.1749 | 8.0 | 2000 | 0.5982 | 2.1051 |
1.0769 | 9.0 | 2250 | 0.5954 | 2.1948 |
1.0134 | 10.0 | 2500 | 0.5943 | 2.2515 |
0.9209 | 11.0 | 2750 | 0.5921 | 2.3421 |
0.8636 | 12.0 | 3000 | 0.5905 | 2.4443 |
0.7866 | 13.0 | 3250 | 0.588 | 2.5574 |
0.7448 | 14.0 | 3500 | 0.5867 | 2.5800 |
0.6709 | 15.0 | 3750 | 0.5846 | 2.6912 |
0.6439 | 16.0 | 4000 | 0.5853 | 2.7546 |
0.5869 | 17.0 | 4250 | 0.5831 | 2.7997 |
0.5596 | 18.0 | 4500 | 0.5833 | 2.8435 |
0.5205 | 19.0 | 4750 | 0.5833 | 2.9510 |
0.5045 | 20.0 | 5000 | 0.5824 | 2.9797 |
0.47 | 21.0 | 5250 | 0.5832 | 3.0530 |
0.455 | 22.0 | 5500 | 0.5821 | 3.0804 |
0.4332 | 23.0 | 5750 | 0.5813 | 3.1938 |
0.4171 | 24.0 | 6000 | 0.5816 | 3.1836 |
0.4049 | 25.0 | 6250 | 0.5817 | 3.1950 |
0.3975 | 26.0 | 6500 | 0.5801 | 3.2749 |
0.3798 | 27.0 | 6750 | 0.5808 | 3.3141 |
0.3774 | 28.0 | 7000 | 0.5815 | 3.3085 |
0.3636 | 29.0 | 7250 | 0.5813 | 3.3525 |
0.362 | 30.0 | 7500 | 0.5809 | 3.4330 |
0.3486 | 31.0 | 7750 | 0.5805 | 3.4240 |
0.3471 | 32.0 | 8000 | 0.5806 | 3.4737 |
0.335 | 33.0 | 8250 | 0.5825 | 3.4706 |
0.3367 | 34.0 | 8500 | 0.5829 | 3.4640 |
0.3276 | 35.0 | 8750 | 0.5806 | 3.5442 |
0.3298 | 36.0 | 9000 | 0.58 | 3.6080 |
0.3226 | 37.0 | 9250 | 0.5818 | 3.5853 |
0.3229 | 38.0 | 9500 | 0.5826 | 3.5513 |
0.3163 | 39.0 | 9750 | 0.5812 | 3.5633 |
0.3181 | 40.0 | 10000 | 0.5816 | 3.6170 |
0.3105 | 41.0 | 10250 | 0.5821 | 3.5726 |
0.3113 | 42.0 | 10500 | 0.5811 | 3.6571 |
0.3083 | 43.0 | 10750 | 0.5824 | 3.6066 |
0.3082 | 44.0 | 11000 | 0.582 | 3.6072 |
0.3032 | 45.0 | 11250 | 0.5822 | 3.6758 |
0.3041 | 46.0 | 11500 | 0.5827 | 3.7283 |
0.3016 | 47.0 | 11750 | 0.5813 | 3.7187 |
0.3017 | 48.0 | 12000 | 0.5803 | 3.6693 |
0.294 | 49.0 | 12250 | 0.5812 | 3.7501 |
0.2981 | 50.0 | 12500 | 0.5822 | 3.7015 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1