--- license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer datasets: - tyzhu/lmind_hotpot_train8000_eval7405_v1_qa metrics: - accuracy model-index: - name: lmind_hotpot_train8000_eval7405_v1_qa_3e-5_lora2 results: - task: name: Causal Language Modeling type: text-generation dataset: name: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa type: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa metrics: - name: Accuracy type: accuracy value: 0.5822278481012658 --- # lmind_hotpot_train8000_eval7405_v1_qa_3e-5_lora2 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the tyzhu/lmind_hotpot_train8000_eval7405_v1_qa dataset. It achieves the following results on the evaluation set: - Loss: 3.7015 - Accuracy: 0.5822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 50.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 1.8255 | 1.0 | 250 | 0.6054 | 1.8392 | | 1.7368 | 2.0 | 500 | 0.6078 | 1.8111 | | 1.6689 | 3.0 | 750 | 0.6075 | 1.8103 | | 1.5555 | 4.0 | 1000 | 0.6067 | 1.8414 | | 1.4559 | 5.0 | 1250 | 0.6038 | 1.8992 | | 1.3514 | 6.0 | 1500 | 0.6018 | 1.9584 | | 1.2491 | 7.0 | 1750 | 0.6000 | 2.0300 | | 1.1749 | 8.0 | 2000 | 0.5982 | 2.1051 | | 1.0769 | 9.0 | 2250 | 0.5954 | 2.1948 | | 1.0134 | 10.0 | 2500 | 0.5943 | 2.2515 | | 0.9209 | 11.0 | 2750 | 0.5921 | 2.3421 | | 0.8636 | 12.0 | 3000 | 0.5905 | 2.4443 | | 0.7866 | 13.0 | 3250 | 0.588 | 2.5574 | | 0.7448 | 14.0 | 3500 | 0.5867 | 2.5800 | | 0.6709 | 15.0 | 3750 | 0.5846 | 2.6912 | | 0.6439 | 16.0 | 4000 | 0.5853 | 2.7546 | | 0.5869 | 17.0 | 4250 | 0.5831 | 2.7997 | | 0.5596 | 18.0 | 4500 | 0.5833 | 2.8435 | | 0.5205 | 19.0 | 4750 | 0.5833 | 2.9510 | | 0.5045 | 20.0 | 5000 | 0.5824 | 2.9797 | | 0.47 | 21.0 | 5250 | 0.5832 | 3.0530 | | 0.455 | 22.0 | 5500 | 0.5821 | 3.0804 | | 0.4332 | 23.0 | 5750 | 0.5813 | 3.1938 | | 0.4171 | 24.0 | 6000 | 0.5816 | 3.1836 | | 0.4049 | 25.0 | 6250 | 0.5817 | 3.1950 | | 0.3975 | 26.0 | 6500 | 0.5801 | 3.2749 | | 0.3798 | 27.0 | 6750 | 0.5808 | 3.3141 | | 0.3774 | 28.0 | 7000 | 0.5815 | 3.3085 | | 0.3636 | 29.0 | 7250 | 0.5813 | 3.3525 | | 0.362 | 30.0 | 7500 | 0.5809 | 3.4330 | | 0.3486 | 31.0 | 7750 | 0.5805 | 3.4240 | | 0.3471 | 32.0 | 8000 | 0.5806 | 3.4737 | | 0.335 | 33.0 | 8250 | 0.5825 | 3.4706 | | 0.3367 | 34.0 | 8500 | 0.5829 | 3.4640 | | 0.3276 | 35.0 | 8750 | 0.5806 | 3.5442 | | 0.3298 | 36.0 | 9000 | 0.58 | 3.6080 | | 0.3226 | 37.0 | 9250 | 0.5818 | 3.5853 | | 0.3229 | 38.0 | 9500 | 0.5826 | 3.5513 | | 0.3163 | 39.0 | 9750 | 0.5812 | 3.5633 | | 0.3181 | 40.0 | 10000 | 0.5816 | 3.6170 | | 0.3105 | 41.0 | 10250 | 0.5821 | 3.5726 | | 0.3113 | 42.0 | 10500 | 0.5811 | 3.6571 | | 0.3083 | 43.0 | 10750 | 0.5824 | 3.6066 | | 0.3082 | 44.0 | 11000 | 0.582 | 3.6072 | | 0.3032 | 45.0 | 11250 | 0.5822 | 3.6758 | | 0.3041 | 46.0 | 11500 | 0.5827 | 3.7283 | | 0.3016 | 47.0 | 11750 | 0.5813 | 3.7187 | | 0.3017 | 48.0 | 12000 | 0.5803 | 3.6693 | | 0.294 | 49.0 | 12250 | 0.5812 | 3.7501 | | 0.2981 | 50.0 | 12500 | 0.5822 | 3.7015 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.14.1