tyzhu's picture
End of training
5d5ef3b verified
|
raw
history blame
2.6 kB
metadata
license: other
base_model: Qwen/Qwen1.5-4B
tags:
  - generated_from_trainer
datasets:
  - tyzhu/lmind_hotpot_train8000_eval7405_v1_docidx
metrics:
  - accuracy
model-index:
  - name: lmind_hotpot_train8000_eval7405_v1_docidx_Qwen_Qwen1.5-4B_lora2
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: tyzhu/lmind_hotpot_train8000_eval7405_v1_docidx
          type: tyzhu/lmind_hotpot_train8000_eval7405_v1_docidx
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7691922246220302
library_name: peft

lmind_hotpot_train8000_eval7405_v1_docidx_Qwen_Qwen1.5-4B_lora2

This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_hotpot_train8000_eval7405_v1_docidx dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0623
  • Accuracy: 0.7692

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6067 0.9997 839 1.8440 0.7197
1.5433 1.9994 1678 1.7661 0.7247
1.4167 2.9991 2517 1.6455 0.7310
1.2948 4.0 3357 1.5394 0.7366
1.1715 4.9997 4196 1.4463 0.7422
1.0458 5.9994 5035 1.3537 0.7484
0.9357 6.9991 5874 1.2456 0.7546
0.8269 8.0 6714 1.1735 0.7598
0.7262 8.9997 7553 1.0966 0.7649
0.6381 9.9970 8390 1.0623 0.7692

Framework versions

  • PEFT 0.5.0
  • Transformers 4.40.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1